多阶等差数列及其通项公式求法

多阶等差数列及其通项公式求法一 定义 多阶等差数列也叫高阶等差数列 将一个数列的所有后项与前一项之差组成一个新的数列 再将这个新数列的所有后项与前一项之差组成另一个新的数列 如此进行下去 直到最后的数列如果是普通等差数列 那么原数列就是多阶等差数列

欢迎大家来到IT世界,在知识的湖畔探索吧!

一、定义:

多阶等差数列也叫高阶等差数列:将一个数列的所有后项与前一项之差组成一个新的数列,再将这个新数列的所有后项与前一项之差组成另一个新的数列,如此进行下去,直到最后的数列如果是普通等差数列,那么原数列就是多阶等差数列。

经过n次相减最终成为常数数列的,就称原数列为n阶等差数列;所以,普通等差数列也可以称为1阶等差数列,常数数列称为0阶等差数列。

二、举例:

数列:1 4 7 10 13 ……,经过1次相减得到:3 3 3 3 3……已经成为常数数列,所以原数列是1阶等差数列,其公差为3,通项公式为:an=3n-2.

数列:1 3 6 10 15 21……,其项差依次为:2 3 4 5 6 7……,再求项差为:1 1 1 1 1……,总共经过2次相减成为常数数列,所以它属于2阶等差数列,其通项公式为:an=1/2*(n^2+n)=1/2*n^2+1/2*n.

数列:1 4 10 20 35 56 84……,其项差为:3 6 10 15 21 28……,再求项差为:3 4 5 6 7……,再求项差为:1 1 1 1……,总共减了3次成为常数数列,因此它属于3阶等差数列,通项公式为:an=1/6*(n^3+3n^2+2n)=1/6n^3+1/2n^2+1/3n;

数列:6 24 60 120 210 336 504……其项差依次为:18 36 60 90 126 168……,再求项差为:18 24 30 36 42……,再求项差为:6 6 6 6……,总共减了3次成为常数数列,因此它也属于3阶等差数列,其通项公式为:an=n(n+1)(n+2)=n^3+3n^2+2n.

三、求通项公式:

  1. 1阶等差数列的通项公式是一个关于自然数 n的1次多项式;2阶等差数列的通项公式是一个关于自然数 n的2次多项式;……n阶等差数列的通项公式是一个关于自然数 n的n次多项式。

2.如果知道一个n阶等差数列的前n项为:a1 a2 a3……an,就可以列一个关于自然数 n的1元n-1次方程组:

X1+X2+X3+……+X(n-1)+Xn=b1

2^(n-1)*X1+2^(n-2)*X2+2^(n-3)*X3……+2*X(n-1)+Xn=b2

3^(n-1)*X1+3^(n-2)*X2+3^(n-3)*X3……+3*X(n-1)+Xn=b3

…… …… ……

n^(n-1)*X1+n^(n-2)*X2+n^(n-3)*X3……+n*X(n-1)+Xn=bn

通过解上面的方程组求出未知数x1 x2 x3……xn的值,就可得到它的通项公式:an=X1*n^(n-1)+X2*n^(n-2)+……+X(n-1)*n+Xn.

因此,多阶等差数列的通项公式都是一个关于自然数 n的多项式,故也可称其为多项式数列。

免责声明:本站所有文章内容,图片,视频等均是来源于用户投稿和互联网及文摘转载整编而成,不代表本站观点,不承担相关法律责任。其著作权各归其原作者或其出版社所有。如发现本站有涉嫌抄袭侵权/违法违规的内容,侵犯到您的权益,请在线联系站长,一经查实,本站将立刻删除。 本文来自网络,若有侵权,请联系删除,如若转载,请注明出处:https://itzsg.com/98930.html

(0)
上一篇 3天前
下一篇 3天前

相关推荐

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

联系我们YX

mu99908888

在线咨询: 微信交谈

邮件:itzsgw@126.com

工作时间:时刻准备着!

关注微信