【驱动】串口驱动分析(二)-tty core

【驱动】串口驱动分析(二)-tty core前言tty这个名称源于电传打字节的简称,在linux表示各种终端,终端通常都跟硬件相对应。比如对应于输入设备键盘鼠标,输出设备显示器的控制终端和串口终端。也有对应于不存在设备的pty驱动。在如此众多的终端模型之中,linux是怎么将它们统一

欢迎大家来到IT世界,在知识的湖畔探索吧!

前言

tty这个名称源于电传打字节的简称,在linux表示各种终端,终端通常都跟硬件相对应。比如对应于输入设备键盘鼠标,输出设备显示器的控制终端和串口终端。也有对应于不存在设备的pty驱动。在如此众多的终端模型之中,linux是怎么将它们统一建模的呢?这就是我们今天要讨论的问题。

tty驱动概貌

tty架构如下所示:

【驱动】串口驱动分析(二)-tty core

如上图所示,用户空间主要是通过系统调用与tty core交互。tty core根据用空间操作的类型再选择跟line disciplinetty driver交互。

例如,设置硬件的ioctl指令就直接交给tty_driver处理。read和write操作就会交给 line discipline处理。

Line discipline是线路规程的意思。正如它的名字一样,它表示的是这条终端”线程”的输入与输出规范设置。主要用来进行输入/输出数据的预处理。

处理之后,就会将数据交给tty driver ,它将字符转换成终端可以理解的字串。将其传给终端设备。

值得注意的是,这个架构没有为tty driver 提供read操作。也就是说tty coreline discipline都没有办法从tty driver里直接读终端信息。这是因为tty driver对应的hardware并不一定是输入数据和输出 数据的共同负载者。

例如控制终端,输出设备是显示器,输入设备是键盘。基于这样的原理。在line discipline中有一个输入缓存区,并提供了一个名叫receive_buf()的接口函数。对应的终端设备只要调用line discipinereceiver_buf函数,将数据写入到输入缓存区就可以了。如果一个设备同时是输入设备又是输出设备。那在设备的中断处理中调用receive_buf()将数据写入即可.

tty驱动接口分析

tty_init()

/* * Ok, now we can initialize the rest of the tty devices and can count * on memory allocations, interrupts etc.. */ int __init tty_init(void) { tty_sysctl_init(); cdev_init(&tty_cdev, &tty_fops); if (cdev_add(&tty_cdev, MKDEV(TTYAUX_MAJOR, 0), 1) || register_chrdev_region(MKDEV(TTYAUX_MAJOR, 0), 1, "/dev/tty") < 0) panic("Couldn't register /dev/tty driver\n"); device_create(tty_class, NULL, MKDEV(TTYAUX_MAJOR, 0), NULL, "tty"); cdev_init(&console_cdev, &console_fops); if (cdev_add(&console_cdev, MKDEV(TTYAUX_MAJOR, 1), 1) || register_chrdev_region(MKDEV(TTYAUX_MAJOR, 1), 1, "/dev/console") < 0) panic("Couldn't register /dev/console driver\n"); consdev = device_create_with_groups(tty_class, NULL, MKDEV(TTYAUX_MAJOR, 1), NULL, cons_dev_groups, "console"); if (IS_ERR(consdev)) consdev = NULL; #ifdef CONFIG_VT vty_init(&console_fops); #endif return 0; } 

欢迎大家来到IT世界,在知识的湖畔探索吧!

tty_init主要做了以下工作:

  1. 初始化 tty 子系统的 sysctl 相关设置,包括注册 sysctl 参数、创建 sysctl 目录等。
  2. 初始化 tty 设备的字符设备对象,并将其与 tty 设备操作函数 tty_fops 绑定。同时,创建一个名为 “tty” 的 tty 设备节点,并将其设备号设置为 MKDEV(TTYAUX_MAJOR, 0)
  3. 初始化控制台设备的字符设备对象,并将其添加到字符设备系统中。同时,创建一个名为 “console” 的控制台设备节点,并将其设备号设置为 MKDEV(TTYAUX_MAJOR, 1)。该控制台设备节点还将在 sysfs 中创建一个名为 “console” 的目录,并在该目录下创建多个属性文件,用于控制控制台的一些属性。
  4. 如果内核支持虚拟终端,则初始化虚拟终端。

这里我们看到了熟悉的cdev_init(),device_create()之类的函数,这正是字符设备的创建流程。因此,我们说串口驱动也是一个字符设备驱动。

而在serial8250_init()中,会调用platform_driver_register()去注册serial8250_isa_driver,在设备树节点和serial8250_isa_driver name匹配的时候,就会进入probe流程。因此,也可以说串口驱动是总线设备驱动模型。

tty_alloc_driver

欢迎大家来到IT世界,在知识的湖畔探索吧!/* Use TTY_DRIVER_* flags below */ #define tty_alloc_driver(lines, flags) \ __tty_alloc_driver(lines, THIS_MODULE, flags) 

__tty_alloc_driver()用于分配一个 tty 驱动程序的数据结构 struct tty_driver,并对其一些常用字段进行初始化。

/** * __tty_alloc_driver -- allocate tty driver * @lines: count of lines this driver can handle at most * @owner: module which is repsonsible for this driver * @flags: some of TTY_DRIVER_* flags, will be set in driver->flags * * This should not be called directly, some of the provided macros should be * used instead. Use IS_ERR and friends on @retval. */ struct tty_driver *__tty_alloc_driver(unsigned int lines, struct module *owner, unsigned long flags) { struct tty_driver *driver; unsigned int cdevs = 1; int err; if (!lines || (flags & TTY_DRIVER_UNNUMBERED_NODE && lines > 1)) return ERR_PTR(-EINVAL); /*分配一个 struct tty_driver 结构体,并对其中的一些字段进行初始化,包括 num、owner、flags 等*/ driver = kzalloc(sizeof(struct tty_driver), GFP_KERNEL); if (!driver) return ERR_PTR(-ENOMEM); kref_init(&driver->kref); driver->magic = TTY_DRIVER_MAGIC; driver->num = lines; driver->owner = owner; driver->flags = flags; /*如果 TTY_DRIVER_DEVPTS_MEM 标志位没有被设置,那么函数会分配 driver->ttys 和 driver->termios,否则不需要分配*/ if (!(flags & TTY_DRIVER_DEVPTS_MEM)) { driver->ttys = kcalloc(lines, sizeof(*driver->ttys), GFP_KERNEL); driver->termios = kcalloc(lines, sizeof(*driver->termios), GFP_KERNEL); if (!driver->ttys || !driver->termios) { err = -ENOMEM; goto err_free_all; } } /*如果 TTY_DRIVER_DYNAMIC_ALLOC 标志位没有被设置,那么函数会分配 driver->ports,否则不需要分配*/ if (!(flags & TTY_DRIVER_DYNAMIC_ALLOC)) { driver->ports = kcalloc(lines, sizeof(*driver->ports), GFP_KERNEL); if (!driver->ports) { err = -ENOMEM; goto err_free_all; } cdevs = lines; } /*函数会根据 lines 的值分配相应数量的 driver->cdevs*/ driver->cdevs = kcalloc(cdevs, sizeof(*driver->cdevs), GFP_KERNEL); if (!driver->cdevs) { err = -ENOMEM; goto err_free_all; } return driver; err_free_all: kfree(driver->ports); kfree(driver->ttys); kfree(driver->termios); kfree(driver->cdevs); kfree(driver); return ERR_PTR(err); } 

tty_register_driver

tty_register_driver用于注册 tty 驱动程序的,被 tty 驱动程序调用以将自己注册到内核中。

欢迎大家来到IT世界,在知识的湖畔探索吧!/* * Called by a tty driver to register itself. */ int tty_register_driver(struct tty_driver *driver) { int error; int i; dev_t dev; struct device *d; /*确认是否要内核动态分配主设备号*/ if (!driver->major) { /*函数调用 alloc_chrdev_region 函数来动态分配主设备号,并将分配的主设备号和次设备号保存在 driver->major 和 driver->minor_start 字段中*/ error = alloc_chrdev_region(&dev, driver->minor_start, driver->num, driver->name); if (!error) { driver->major = MAJOR(dev); driver->minor_start = MINOR(dev); } } else { /*已经预先分配了主设备号,函数调用 register_chrdev_region 函数来注册设备号*/ dev = MKDEV(driver->major, driver->minor_start); error = register_chrdev_region(dev, driver->num, driver->name); } if (error < 0) goto err; /*判断是否设置了 TTY_DRIVER_DYNAMIC_ALLOC 标志位*/ if (driver->flags & TTY_DRIVER_DYNAMIC_ALLOC) { /*需要动态分配 tty 设备号,函数调用 tty_cdev_add 函数来添加 tty 设备号,并将每个 tty 设备的字符设备注册到内核中*/ error = tty_cdev_add(driver, dev, 0, driver->num); if (error) goto err_unreg_char; } mutex_lock(&tty_mutex); /*将 driver 添加到链表 tty_drivers 中*/ list_add(&driver->tty_drivers, &tty_drivers); mutex_unlock(&tty_mutex); /*判断 TTY_DRIVER_DYNAMIC_DEV 标志位是否设置*/ if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV)) { for (i = 0; i < driver->num; i++) { /*需要注册固定的 tty 设备号,函数在循环中调用 tty_register_device 函数来注册每个 tty 设备号,并将每个 tty 设备注册到内核中*/ d = tty_register_device(driver, i, NULL); if (IS_ERR(d)) { error = PTR_ERR(d); goto err_unreg_devs; } } } /*注册 /proc/tty/drivers 目录中的信息*/ proc_tty_register_driver(driver); /*将 driver 结构体中的 flags 字段设置为 TTY_DRIVER_INSTALLED,表示该驱动程序已经被成功注册到内核中*/ driver->flags |= TTY_DRIVER_INSTALLED; return 0; err_unreg_devs: for (i--; i >= 0; i--) tty_unregister_device(driver, i); mutex_lock(&tty_mutex); list_del(&driver->tty_drivers); mutex_unlock(&tty_mutex); err_unreg_char: unregister_chrdev_region(dev, driver->num); err: return error; } 

tty_register_driver()函数操作比较简单。就是为tty_driver创建字符设备。然后将字符设备的操作集指定为tty_fops。并且将tty_driver 挂载到tty_drivers链表中。这个链表中是以设备号为关键字找到对应的driver。

特别的。如果没有定义TTY_DRIVER_DYNAMIC_DEV。还会在sysfs中创建一个类设备。这样主要是为了udev管理设备。

tty_unregister_device

tty_unregister_device用于注销一个 tty 设备。该函数的作用是销毁设备节点和字符设备,以便于释放与该 tty 设备相关的资源,例如内存和设备文件等.

/** * tty_unregister_device - unregister a tty device * @driver: the tty driver that describes the tty device * @index: the index in the tty driver for this tty device * * If a tty device is registered with a call to tty_register_device() then * this function must be called when the tty device is gone. * * Locking: ?? */ void tty_unregister_device(struct tty_driver *driver, unsigned index) { device_destroy(tty_class, MKDEV(driver->major, driver->minor_start) + index); if (!(driver->flags & TTY_DRIVER_DYNAMIC_ALLOC)) { cdev_del(driver->cdevs[index]); driver->cdevs[index] = NULL; } } 

tty_unregister_device所做工作如下:

  1. 调用 device_destroy 函数来销毁 tty 设备对应的设备节点。接受两个参数:第一个参数 tty_class 表示 tty 类,第二个参数是 tty 设备的设备号,其中 MKDEV(driver->major, driver->minor_start) + index 表示 tty 设备的设备号,driver->major 表示 tty 设备的主设备号,driver->minor_start 表示 tty 设备的次设备号的起始值,index 表示 tty 设备的索引
  2. 如果该 tty 驱动程序不是动态分配的,则调用 cdev_del 函数来注销该 tty 设备对应的字符设备。

get_tty_driver

get_tty_driver作用是在用户空间的应用程序使用 tty 设备时,获取对应的 tty 驱动程序的信息。

/** * get_tty_driver - find device of a tty * @dev_t: device identifier * @index: returns the index of the tty * * This routine returns a tty driver structure, given a device number * and also passes back the index number. * * Locking: caller must hold tty_mutex */ static struct tty_driver *get_tty_driver(dev_t device, int *index) { struct tty_driver *p; /**/ list_for_each_entry(p, &tty_drivers, tty_drivers) { dev_t base = MKDEV(p->major, p->minor_start); if (device < base || device >= base + p->num) continue; *index = device - base; return tty_driver_kref_get(p); } return NULL; } 

首先使用 list_for_each_entry 循环遍历全局链表 tty_drivers,该链表中保存了所有已经注册的 tty 驱动程序。对于每个 tty 驱动程序,函数将其设备号的起始值和结束值计算出来,如果给定设备号不在这个范围内,则继续遍历下一个 tty 驱动程序。

如果给定设备号在某个 tty 驱动程序的范围内,则计算出该设备号对应的 tty 设备的索引值,并调用 tty_driver_kref_get 函数来获取该 tty 驱动程序的引用计数。函数返回该 tty 驱动程序的结构体指针,并将找到的 tty 设备的索引值保存到 index 参数中。

需要注意的是,函数在访问全局链表 tty_drivers 时,需要持有互斥锁 tty_mutex。因为多个应用程序可能同时访问同一个 tty 驱动程序,如果没有互斥锁保护,可能会导致并发问题。

tty_open

从注册的过程可以看到,所有的操作都会对应到tty_fops中。Open操作对应的操作接口是tty_open(),用于打开一个 tty 设备。函数的作用是在用户空间的应用程序使用 tty 设备时,打开对应的 tty 设备,并初始化相应的数据结构。

/** * tty_open - open a tty device * @inode: inode of device file * @filp: file pointer to tty * * tty_open and tty_release keep up the tty count that contains the * number of opens done on a tty. We cannot use the inode-count, as * different inodes might point to the same tty. * * Open-counting is needed for pty masters, as well as for keeping * track of serial lines: DTR is dropped when the last close happens. * (This is not done solely through tty->count, now. - Ted 1/27/92) * * The termios state of a pty is reset on first open so that * settings don't persist across reuse. * * Locking: tty_mutex protects tty, tty_lookup_driver and tty_init_dev. * tty->count should protect the rest. * ->siglock protects ->signal/->sighand * * Note: the tty_unlock/lock cases without a ref are only safe due to * tty_mutex */ static int tty_open(struct inode *inode, struct file *filp) { struct tty_struct *tty; int noctty, retval; struct tty_driver *driver = NULL; int index; dev_t device = inode->i_rdev; unsigned saved_flags = filp->f_flags; nonseekable_open(inode, filp); retry_open: /*分配一个 tty 结构体*/ retval = tty_alloc_file(filp); if (retval) return -ENOMEM; /*检查文件的标志位,如果包含 O_NOCTTY 标志,则禁止将该 tty 设备设置为控制终端*/ noctty = filp->f_flags & O_NOCTTY; index = -1; retval = 0; /*尝试打开当前的 tty 设备*/ tty = tty_open_current_tty(device, filp); if (!tty) { mutex_lock(&tty_mutex); /*根据设备号来查找对应的 tty 驱动程序,并初始化该 tty 设备,将找到的 tty 驱动程序保存到 driver 变量中*/ driver = tty_lookup_driver(device, filp, &noctty, &index); if (IS_ERR(driver)) { retval = PTR_ERR(driver); goto err_unlock; } /* check whether we're reopening an existing tty */ /*查找对应的 tty 设备,并将找到的 tty 设备结构体指针保存到 tty 变量中*/ tty = tty_driver_lookup_tty(driver, inode, index); if (IS_ERR(tty)) { retval = PTR_ERR(tty); goto err_unlock; } if (tty) { /*如果找到了该 tty 设备,则需要重新打开该 tty 设备*/ mutex_unlock(&tty_mutex); retval = tty_lock_interruptible(tty); tty_kref_put(tty); /* drop kref from tty_driver_lookup_tty() */ if (retval) { if (retval == -EINTR) retval = -ERESTARTSYS; goto err_unref; } retval = tty_reopen(tty); if (retval < 0) { tty_unlock(tty); tty = ERR_PTR(retval); } } else { /* Returns with the tty_lock held for now */ /*需要初始化该 tty 设备*/ tty = tty_init_dev(driver, index); /*为该 tty 设备分配一个 tty 结构体,并对其进行初始化*/ mutex_unlock(&tty_mutex); } tty_driver_kref_put(driver); } if (IS_ERR(tty)) { retval = PTR_ERR(tty); if (retval != -EAGAIN || signal_pending(current)) goto err_file; tty_free_file(filp); schedule(); goto retry_open; } /*将该 tty 设备与文件结构体相关联*/ tty_add_file(tty, filp); check_tty_count(tty, __func__); /*如果该 tty 设备是一个伪终端主设备,则需要将 noctty 标志设置为 1*/ if (tty->driver->type == TTY_DRIVER_TYPE_PTY && tty->driver->subtype == PTY_TYPE_MASTER) noctty = 1; tty_debug_hangup(tty, "(tty count=%d)\n", tty->count); /*调用 tty 设备的 open 函数*/ if (tty->ops->open) retval = tty->ops->open(tty, filp); else retval = -ENODEV; filp->f_flags = saved_flags; if (retval) { tty_debug_hangup(tty, "error %d, releasing...\n", retval); tty_unlock(tty); /* need to call tty_release without BTM */ tty_release(inode, filp); if (retval != -ERESTARTSYS) return retval; if (signal_pending(current)) return retval; schedule(); /* * Need to reset f_op in case a hangup happened. */ if (tty_hung_up_p(filp)) filp->f_op = &tty_fops; goto retry_open; } clear_bit(TTY_HUPPED, &tty->flags); read_lock(&tasklist_lock); spin_lock_irq(¤t->sighand->siglock); if (!noctty && current->signal->leader && !current->signal->tty && tty->session == NULL) { /* * Don't let a process that only has write access to the tty * obtain the privileges associated with having a tty as * controlling terminal (being able to reopen it with full * access through /dev/tty, being able to perform pushback). * Many distributions set the group of all ttys to "tty" and * grant write-only access to all terminals for setgid tty * binaries, which should not imply full privileges on all ttys. * * This could theoretically break old code that performs open() * on a write-only file descriptor. In that case, it might be * necessary to also permit this if * inode_permission(inode, MAY_READ) == 0. */ if (filp->f_mode & FMODE_READ) __proc_set_tty(tty); } spin_unlock_irq(¤t->sighand->siglock); read_unlock(&tasklist_lock); tty_unlock(tty); return 0; err_unlock: mutex_unlock(&tty_mutex); err_unref: /* after locks to avoid deadlock */ if (!IS_ERR_OR_NULL(driver)) tty_driver_kref_put(driver); err_file: tty_free_file(filp); return retval; } 

函数所作工作如下:

  1. 在打开 tty 设备时,该函数会检查文件的标志位,如果包含 O_NOCTTY 标志,则禁止将该 tty 设备设置为控制终端。这是因为如果一个进程打开一个 tty 设备并将其设置为控制终端,其他进程就无法再将该 tty 设备设置为控制终端,这可能会导致一些问题。
  2. 如果打开当前的 tty 设备失败,则需要根据设备号来查找对应的 tty 驱动程序,并初始化该 tty 设备。在查找 tty 驱动程序时,需要调用 tty_lookup_driver 函数来查找对应的 tty 驱动程序,并将找到的 tty 驱动程序保存到 driver 变量中。如果找不到对应的 tty 驱动程序,则返回错误码。
  3. 如果找到了对应的 tty 驱动程序,则调用 tty_driver_lookup_tty 函数来查找对应的 tty 设备,并将找到的 tty 设备结构体指针保存到 tty 变量中。如果找到了该 tty 设备,则需要重新打开该 tty 设备。否则,需要初始化该 tty 设备。在初始化 tty 设备时,需要调用 tty_init_dev 函数来为该 tty 设备分配一个 tty 结构体,并对其进行初始化。
  4. 在打开 tty 设备之后,函数会调用 tty_add_file 函数将该 tty 设备与文件结构体相关联。此外,如果该 tty 设备是一个伪终端主设备,则需要将 noctty 标志设置为 1。
  5. 最后,函数会调用 tty 设备的 open 函数,如果存在的话,来进行一些特定的操作。如果 open 函数返回错误码,则需要释放该 tty 设备并返回错误码。如果 open 函数返回 -ERESTARTSYS,则需要重新打开该 tty 设备。如果有中断发生,也需要重新打开该 tty 设备。

tty_write

tty_write()作用是将用户数据写入 tty 设备,并通过线路规则(line discipline)进行处理。

线路规则是 tty 设备的一种机制,用于处理和转换从用户进程到内核和设备的数据流。在写入 tty 设备之前,需要获取该 tty 设备的线路规则,并调用其 write 方法进行处理。

/** * tty_write - write method for tty device file * @file: tty file pointer * @buf: user data to write * @count: bytes to write * @ppos: unused * * Write data to a tty device via the line discipline. * * Locking: * Locks the line discipline as required * Writes to the tty driver are serialized by the atomic_write_lock * and are then processed in chunks to the device. The line discipline * write method will not be invoked in parallel for each device. */ static ssize_t tty_write(struct file *file, const char __user *buf, size_t count, loff_t *ppos) { struct tty_struct *tty = file_tty(file); struct tty_ldisc *ld; ssize_t ret; if (tty_paranoia_check(tty, file_inode(file), "tty_write")) return -EIO; if (!tty || !tty->ops->write || (test_bit(TTY_IO_ERROR, &tty->flags))) return -EIO; /* Short term debug to catch buggy drivers */ if (tty->ops->write_room == NULL) printk(KERN_ERR "tty driver %s lacks a write_room method.\n", tty->driver->name); ld = tty_ldisc_ref_wait(tty); if (!ld->ops->write) ret = -EIO; else ret = do_tty_write(ld->ops->write, tty, file, buf, count); tty_ldisc_deref(ld); return ret; } 

tty_write()所作工作如下:

  1. 首先从文件指针中获取 tty_struct 数据结构的指针,表示要写入的 tty 设备。
  2. 检查传入的 tty_struct 指针是否有效,以及是否有其他进程正在访问该 tty 设备。如果出现问题,返回输入/输出错误码 -EIO
  3. 检查 tty_struct 指针是否有效、tty 设备是否支持写操作,以及是否已经出现了输入/输出错误。如果出现问题,返回输入/输出错误码 -EIO
  4. 检查 tty 设备是否实现了 write_room 方法,如果没有,则输出错误信息。
  5. 获取 tty 设备的线路规则(line discipline),并等待获取成功。
  6. 检查线路规则的 write 方法是否存在,如果不存在,返回输入/输出错误码 -EIO。否则,调用 do_tty_write 函数,将数据写入 tty 设备。
  7. 释放线路规则引用计数器。
  8. 返回写入操作的结果,如果写入成功,则返回写入的字节数;否则,返回相应的错误码。

tty_read

/** * tty_read - read method for tty device files * @file: pointer to tty file * @buf: user buffer * @count: size of user buffer * @ppos: unused * * Perform the read system call function on this terminal device. Checks * for hung up devices before calling the line discipline method. * * Locking: * Locks the line discipline internally while needed. Multiple * read calls may be outstanding in parallel. */ static ssize_t tty_read(struct file *file, char __user *buf, size_t count, loff_t *ppos) { int i; struct inode *inode = file_inode(file); struct tty_struct *tty = file_tty(file); struct tty_ldisc *ld; if (tty_paranoia_check(tty, inode, "tty_read")) return -EIO; if (!tty || (test_bit(TTY_IO_ERROR, &tty->flags))) return -EIO; /* We want to wait for the line discipline to sort out in this situation */ ld = tty_ldisc_ref_wait(tty); if (ld->ops->read) i = ld->ops->read(tty, file, buf, count); else i = -EIO; tty_ldisc_deref(ld); if (i > 0) tty_update_time(&inode->i_atime); return i; } 

tty_read()实现终端设备文件读操作的函数 。

  1. 获取 tty_struct 结构体、inodeline discipline 对象的指针。
  2. 调用 tty_paranoia_check() 函数检查 tty_struct 结构体是否可用。如果检查失败,返回 -EIO。
  3. 检查 tty_struct 结构体是否为空或者 TTY_IO_ERROR 标志位已经设置。如果是,则返回 -EIO。
  4. 获取 line discipline 对象的引用,确保它不会在 tty_read() 函数执行期间被卸载。
  5. 检查 line disciplineread() 方法是否可用。如果可用,则调用该方法进行读取操作,并将返回的字节数保存在变量 i 中。如果不可用,返回 -EIO。
  6. 释放 line discipline 的引用。
  7. 如果读取操作成功,调用 tty_update_time() 函数更新 inode 的访问时间。
  8. 返回读取的字节数。

小结

在这一节里,只对tty的构造做一个分析,具体的比如线路规程的内容我们了解知道就好,这里不做深入分析。

本文参考

https://blog.csdn.net/pan0755/article/details/

https://blog.csdn.net/_/article/details/

https://www.jianshu.com/p/09e87a725ed4

https://blog.csdn.net/weixin_/article/details/

https://blog.csdn.net/pan0755/article/details/

免责声明:本站所有文章内容,图片,视频等均是来源于用户投稿和互联网及文摘转载整编而成,不代表本站观点,不承担相关法律责任。其著作权各归其原作者或其出版社所有。如发现本站有涉嫌抄袭侵权/违法违规的内容,侵犯到您的权益,请在线联系站长,一经查实,本站将立刻删除。 本文来自网络,若有侵权,请联系删除,如若转载,请注明出处:https://itzsg.com/79094.html

(0)

相关推荐

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

联系我们YX

mu99908888

在线咨询: 微信交谈

邮件:itzsgw@126.com

工作时间:时刻准备着!

关注微信