Java分布式系统—消息中间件

简介消息中间件也可以称消息队列,是指用高效可靠的消息传递机制进行与平台无关的数据交流,并基于数据通信来进行分布式系统的集成。通过提供消息传递和消

简介

消息中间件也可以称消息队列,是指用高效可靠的消息传递机制进行与平台无关的数据交流,并基于数据通信来进行分布式系统的集成。通过提供消息传递和消息队列模型,可以在分布式环境下扩展进程的通信。当下主流的消息中间件有RabbitMQ、Kafka、ActiveMQ、RocketMQ等。其能在不同平台之间进行通信,常用来屏蔽各种平台协议之间的特性,实现应用程序之间的协同。其优点在于能够在客户端和服务器之间进行同步和异步的连接,并且在任何时刻都可以将消息进行传送和转发。是分布式系统中非常重要的组件,主要用来解决应用耦合、异步通信、流量削峰等问题

消息中间件的作用

消息中间件几大主要作用如下:

  • 解耦
    降低工程间的强依赖程度,针对异构系统进行适配。在项目启动之初来预测将来项目会碰到什么需求,是极其困难的。通过消息系统在处理过程中间插入了一个隐含的、基于数据的接口层,两边的处理过程都要实现这一接口,当应用发生变化时,可以独立的扩展或修改两边的处理过程,只要确保它们遵守同样的接口约束。
  • 冗余(存储)
    有些情况下,处理数据的过程会失败。除非数据被持久化,否则将造成丢失。消息队列把数据进行持久化直到它们已经被完全处理,通过这一方式规避了数据丢失风险。许多消息队列所采用的”插入-获取-删除”范式中,在把一个消息从队列中删除之前,需要你的处理系统明确的指出该消息已经被处理完毕,从而确保你的数据被安全的保存直到你使用完毕。
  • 扩展性
    因为消息队列解耦了你的处理过程,所以增大消息入队和处理的频率是很容易的,只要另外增加处理过程即可。不需要改变代码、不需要调节参数。便于分布式扩容。
  • 削峰
    在访问量剧增的情况下,应用仍然需要继续发挥作用,但是这样的突发流量无法提前预知;如果以为了能处理这类瞬间峰值访问为标准来投入资源随时待命无疑是巨大的浪费。使用消息队列能够使关键组件顶住突发的访问压力,而不会因为突发的超负荷的请求而完全崩溃。
  • 可恢复性
    系统的一部分组件失效时,不会影响到整个系统。消息队列降低了进程间的耦合度,所以即使一个处理消息的进程挂掉,加入队列中的消息仍然可以在系统恢复后被处理。
  • 顺序保证
    在大多使用场景下,数据处理的顺序都很重要。大部分消息队列本来就是排序的,并且能保证数据会按照特定的顺序来处理。
  • 缓冲
    在任何重要的系统中,都会有需要不同的处理时间的元素。消息队列通过一个缓冲层来帮助任务最高效率的执行,该缓冲有助于控制和优化数据流经过系统的速度。以调节系统响应时间。
  • 异步通信
    有些业务不想也不需要立即处理消息。消息队列提供了异步处理机制,允许用户把一个消息放入队列,但并不立即处理它。想向队列中放入多少消息就放多少,然后在需要的时候再去处理它们。

消息中间件的两种模式

PTP模式 (点对点)使用Queue作为通信载体

P2P模式包含三个角色:消息队列(Queue),发送者(Sender),接收者(Receiver)。每个消息都被发送到一个特定的队列,接收者从队列中获取消息。队列保留着消息,直到他们被消费或超时。

P2P的特点:

  • 每个消息只有一个消费者(Consumer)(即一旦被消费,消息就不再在消息队列中)
  • 发送者和接收者之间在时间上没有依赖性,也就是说当发送者发送了消息之后,不管接收者有没有正在运行它不会影响到消息被发送到队列
  • 接收者在成功接收消息之后需向队列应答成功
  • 如果希望发送的每个消息都会被成功处理的话,那么需要P2P模式

Pub/Sub模式 (发布/订阅 广播)使用Topic作为通信载体

消息生产者(发布)将消息发布到topic中,同时有多个消息消费者(订阅)消费该消息。和点对点方式不同,发布到topic的消息会被所有订阅者消费。
queue实现了负载均衡,将producer生产的消息发送到消息队列中,由多个消费者消费。但一个消息只能被一个消费者接受,当没有消费者可用时,这个消息会被保存直到有一个可用的消费者。
topic实现了发布和订阅,当你发布一个消息,所有订阅这个topic的服务都能得到这个消息,所以从1到N个订阅者都能得到一个消息的拷贝

Pub/Sub的特点

  • 每个消息可以有多个消费者
  • 发布者和订阅者之间有时间上的依赖性。针对某个主题(Topic)的订阅者,它必须创建一个订阅者之后,才能消费发布者的消息。
  • 为了消费消息,订阅者必须保持运行的状态。
  • 如果希望发送的消息可以不被做任何处理、或者只被一个消息者处理、或者可以被多个消费者处理的话,那么可以采用Pub/Sub模型。

消息中间件解决的问题

异步通信

场景说明:用户在注册后,需要发注册邮件和注册短信,传统的做法有两种:1.串行; 2.并行
1.串行方式:将注册信息写入数据库后,发送注册邮件,再发送注册短信,以上三个任务全部完成后才返回给客户端。 这有一个问题是,邮件,短信并不是必须的,它只是一个通知,而这种做法让客户端等待没有必要等待的东西.
2.并行方式:将注册信息写入数据库后,发送邮件的同时,发送短信,以上三个任务完成后,返回给客户端,并行的方式能提高处理的时间。
假设三个业务节点分别使用50ms,串行方式使用时间150ms,并行使用时间100ms。虽然并性已经提高的处理时间,但是,前面说过,邮件和短信对我正常的使用网站没有任何影响,客户端没有必要等着其发送完成才显示注册成功,应该是写入数据库后就返回.

3.消息队列
引入消息队列后,把发送邮件,短信不是必须的业务逻辑异步处理

Java分布式系统---消息中间件


由此可以看出,引入消息队列后,用户的响应时间就等于写入数据库的时间+写入消息队列的时间(可以忽略不计),引入消息队列后处理后,响应时间是串行的3倍,是并行的2倍。

应用解耦

这是一个高耦合度系统的例子

Java分布式系统---消息中间件


先是来一个人找他要求发送数据给一个新的系统H,系统A的同学要修改代码然后在那个代码里加入调用新系统H的流程。

一会那个系统B是个陈旧老系统要下线了,告诉系统A的同学:别给我发送数据了,接着系统A再次修改代码不再给这个系统B。

然后如果要是某个下游系统突然宕机了呢?

系统A的调用代码里是不是会抛异常?那系统A的同学会收到报警说异常了,结果他还要去care是下游哪个系统宕机了。

所以在实际的系统架构设计中,如果全部采取这种系统耦合的方式,在某些场景下绝对是不合适的,系统耦合度太严重。

并且互相耦合起来并不是核心链路的调用,而是一些非核心的场景(比如上述的数据消费)导致了系统耦合,这样会严重的影响上下游系统的开发和维护效率。

因此在上述系统架构中,就可以采用MQ中间件来实现系统解耦。

系统A就把自己的一份核心数据发到MQ里,下游哪个系统感兴趣自己去消费即可,不需要了就取消数据的消费,如下图所示:

Java分布式系统---消息中间件

流量削峰

  • 场景1
    假设你有一个系统,平时正常的时候每秒可能就几百个请求,每秒几百请求是可以轻松抗住的,
    但是偶尔在高峰期一下子来了每秒钟几千请求,弹指一挥间出现了流量高峰,为了抗住这个高峰,可能会选择扩充机器,增加到10台,但是高峰过后,每秒就几百个请求,这不是有点浪费机器资源吗?
    但是如果你就部署一台机器,那会导致瞬时高峰时,一下子压垮你的系统,因为绝对无法抗住每秒几千的请求高峰。
    此时我们就可以用MQ中间件来进行流量削峰。所有机器前面部署一层MQ,平时每秒几百请求大家都可以轻松接收消息。
    一旦到了瞬时高峰期,一下涌入每秒几千的请求,就可以积压在MQ里面,然后那一台机器慢慢的处理和消费。
    等高峰期过了,再消费一段时间,MQ里积压的数据就消费完毕了。
    这个就是很典型的一个MQ的用法,用有限的机器资源承载高并发请求,如果业务场景允许异步削峰,高峰期积压一些请求在MQ里,然后高峰期过了,后台系统在一定时间内消费完毕不再积压的话,那就很适合用这种技术方案。
  • 场景2
    秒杀活动,一般会因为流量过大,导致应用挂掉,为了解决这个问题,一般在应用前端加入消息队列。
    作用:
    1.可以控制活动人数,超过此一定阀值的订单直接丢弃
    2.可以缓解短时间的高流量压垮应用(应用程序按自己的最大处理能力获取订单)

待补充

消息中间件常用协议

  • AMQP协议
    AMQP即Advanced Message Queuing Protocol,一个提供统一消息服务的应用层标准高级消息队列协议,是应用层协议的一个开放标准,为面向消息的中间件设计。基于此协议的客户端与消息中间件可传递消息,并不受客户端/中间件不同产品,不同开发语言等条件的限制。
    优点:可靠、通用
  • MQTT协议
    MQTT(Message Queuing Telemetry Transport,消息队列遥测传输)是IBM开发的一个即时通讯协议,有可能成为物联网的重要组成部分。该协议支持所有平台,几乎可以把所有联网物品和外部连接起来,被用来当做传感器和致动器(比如通过Twitter让房屋联网)的通信协议。
    优点:格式简洁、占用带宽小、移动端通信、PUSH、嵌入式系统
  • STOMP协议
    STOMP(Streaming Text Orientated Message Protocol)是流文本定向消息协议,是一种为MOM(Message Oriented Middleware,面向消息的中间件)设计的简单文本协议。STOMP提供一个可互操作的连接格式,允许客户端与任意STOMP消息代理(Broker)进行交互。
    优点:命令模式(非topic\queue模式)
  • XMPP协议
    XMPP(可扩展消息处理现场协议,Extensible Messaging and Presence Protocol)是基于可扩展标记语言(XML)的协议,多用于即时消息(IM)以及在线现场探测。适用于服务器之间的准即时操作。核心是基于XML流传输,这个协议可能最终允许因特网用户向因特网上的其他任何人发送即时消息,即使其操作系统和浏览器不同。
    优点:通用公开、兼容性强、可扩展、安全性高,但XML编码格式占用带宽大
  • 其他基于TCP/IP自定义的协议
    有些特殊框架(如:redis、kafka、zeroMq等)根据自身需要未严格遵循MQ规范,而是基于TCP\IP自行封装了一套协议,通过网络socket接口进行传输,实现了MQ的功能。

常用中间件介绍

  • RocketMQ
    阿里系下开源的一款分布式、队列模型的消息中间件,原名Metaq,3.0版本名称改为RocketMQ,是阿里参照kafka设计思想使用java实现的一套mq。同时将阿里系内部多款mq产品(Notify、metaq)进行整合,只维护核心功能,去除了所有其他运行时依赖,保证核心功能最简化,在此基础上配合阿里上述其他开源产品实现不同场景下mq的架构,目前主要多用于订单交易系统。
    具有以下特点:
    能够保证严格的消息顺序
    提供针对消息的过滤功能
    提供丰富的消息拉取模式
    高效的订阅者水平扩展能力
    实时的消息订阅机制
    亿级消息堆积能力
    官方提供了一些不同于kafka的对比差异:
    https://rocketmq.apache.org/docs/motivation/
  • RabbitMQ
    使用Erlang编写的一个开源的消息队列,本身支持很多的协议:AMQP,XMPP, SMTP,STOMP,也正是如此,使的它变的非常重量级,更适合于企业级的开发。同时实现了Broker架构,核心思想是生产者不会将消息直接发送给队列,消息在发送给客户端时先在中心队列排队。对路由(Routing),负载均衡(Load balance)、数据持久化都有很好的支持。多用于进行企业级的ESB整合。
  • ActiveMQ
    Apache下的一个子项目。使用Java完全支持JMS1.1和J2EE 1.4规范的 JMS Provider实现,少量代码就可以高效地实现高级应用场景。可插拔的传输协议支持,比如:in-VM, TCP, SSL, NIO, UDP, multicast, JGroups and JXTA transports。RabbitMQ、ZeroMQ、ActiveMQ均支持常用的多种语言客户端 C++、Java、.Net,、Python、 Php、 Ruby等。
  • Redis
    使用C语言开发的一个Key-Value的NoSQL数据库,开发维护很活跃,虽然它是一个Key-Value数据库存储系统,但它本身支持MQ功能,所以完全可以当做一个轻量级的队列服务来使用。对于RabbitMQ和Redis的入队和出队操作,各执行100万次,每10万次记录一次执行时间。测试数据分为128Bytes、512Bytes、1K和10K四个不同大小的数据。实验表明:入队时,当数据比较小时Redis的性能要高于RabbitMQ,而如果数据大小超过了10K,Redis则慢的无法忍受;出队时,无论数据大小,Redis都表现出非常好的性能,而RabbitMQ的出队性能则远低于Redis。
  • Kafka
    Apache下的一个子项目,使用scala实现的一个高性能分布式Publish/Subscribe消息队列系统,具有以下特性:
    快速持久化:通过磁盘顺序读写与零拷贝机制,可以在O(1)的系统开销下进行消息持久化;
    高吞吐:在一台普通的服务器上既可以达到10W/s的吞吐速率;
    高堆积:支持topic下消费者较长时间离线,消息堆积量大;
    完全的分布式系统:Broker、Producer、Consumer都原生自动支持分布式,依赖zookeeper自动实现复杂均衡;
    支持Hadoop数据并行加载:对于像Hadoop的一样的日志数据和离线分析系统,但又要求实时处理的限制,这是一个可行的解决方案。
  • ZeroMQ
    号称最快的消息队列系统,专门为高吞吐量/低延迟的场景开发,在金融界的应用中经常使用,偏重于实时数据通信场景。ZMQ能够实现RabbitMQ不擅长的高级/复杂的队列,但是开发人员需要自己组合多种技术框架,开发成本高。因此ZeroMQ具有一个独特的非中间件的模式,更像一个socket library,你不需要安装和运行一个消息服务器或中间件,因为你的应用程序本身就是使用ZeroMQ API完成逻辑服务的角色。但是ZeroMQ仅提供非持久性的队列,如果down机,数据将会丢失。如:Twitter的Storm中使用ZeroMQ作为数据流的传输。
    ZeroMQ套接字是与传输层无关的:ZeroMQ套接字对所有传输层协议定义了统一的API接口。默认支持 进程内(inproc) ,进程间(IPC) ,多播,TCP协议,在不同的协议之间切换只要简单的改变连接字符串的前缀。可以在任何时候以最小的代价从进程间的本地通信切换到分布式下的TCP通信。ZeroMQ在背后处理连接建立,断开和重连逻辑。
    特性:
    无锁的队列模型:对于跨线程间的交互(用户端和session)之间的数据交换通道pipe,采用无锁的队列算法CAS;在pipe的两端注册有异步事件,在读或者写消息到pipe的时,会自动触发读写事件。
    批量处理的算法:对于批量的消息,进行了适应性的优化,可以批量的接收和发送消息。
    多核下的线程绑定,无须CPU切换:区别于传统的多线程并发模式,信号量或者临界区,zeroMQ充分利用多核的优势,每个核绑定运行一个工作者线程,避免多线程之间的CPU切换开销。

主要消息中间件的比较

Java分布式系统---消息中间件

如果本文对你有帮助,别忘记给我个3连 ,点赞,转发,评论,

咱们下期见!学习更多JAVA知识与技巧,关注与私信博主(666)

Java分布式系统---消息中间件

免责声明:本站所有文章内容,图片,视频等均是来源于用户投稿和互联网及文摘转载整编而成,不代表本站观点,不承担相关法律责任。其著作权各归其原作者或其出版社所有。如发现本站有涉嫌抄袭侵权/违法违规的内容,侵犯到您的权益,请在线联系站长,一经查实,本站将立刻删除。 本文来自网络,若有侵权,请联系删除,如若转载,请注明出处:https://itzsg.com/9949.html

(0)
上一篇 2023年 4月 22日 下午11:54
下一篇 2023年 4月 22日 下午11:54

相关推荐

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

联系我们YX

mu99908888

在线咨询: 微信交谈

邮件:itzsgw@126.com

工作时间:时刻准备着!

关注微信