欢迎大家来到IT世界,在知识的湖畔探索吧!
有理数是“一维伸缩”的测度值
诸如直尺、温度计、水位计、高度计等一维测量仪,其测量值只能是有理数,规定某一点是零点坐标,就有了±整数与±分数。
无理数是“二维旋转”的平均值
在平面直角坐标系S(0,0)上,将坐标为(1,0)的单位1逆时针旋转45°得到点A(1,1),就得到线段SA=√2。
同理,三角函数的大量无理数,也是通过旋转有理数坐标轴来获得。例如:sin60°=½√3。三角函数型的无理数,属于低级无理数。
再如,自然常数e=lim(1+1/n)^n,来自若干有理数(1+1/n)(1+1/(n+1))的依次乘积。自然常数是一个超级无理数。
两个有理数的乘积ab的几何均值√ab或勾股均值√(a²+b²),相当于一个有理数坐标轴旋转,就存在无理数。
再看,圆周率=圆周长÷直径,即π=C/d,圆周率是一个低级无理数。因为:
直径涉及一维直线的测度,就只能是有理数。
圆周涉及二维旋转的测度,就是低级无理数。
如果涉及多维旋转的测度,就是高级无理数。
虚数是“旋转实数”的代名词
虚数,不是虚幻想象,而是旋转实数的投影。这里把有理数轴泛化为实数轴。
√(-1)是旋转线段在纵轴的投影单位值,即1个i,记作:√(-1)=i。
把有理数坐标(0,1)旋转60°,得实数sin60°=√(3/2),在纵轴投影出虚数√(3/2)i。
复数是伸缩数与旋转数的复合
平面直角坐标系的复数:z(a,b)=a+ib,a代表一维伸缩的实数(a,b),i代逆时针旋转90°在纵轴的投影单位值。
平面极坐标系的复数:z(r,θ)=re^iθ=r(cosθ+isinθ)=r·cosθ+r×isinθ。
其中,r·cosθ是点乘,意味着投影在横轴上的伸缩度或“散度”,r×isinθ是叉乘,意味着投影在纵轴上的旋转度或“旋度”。
免责声明:本站所有文章内容,图片,视频等均是来源于用户投稿和互联网及文摘转载整编而成,不代表本站观点,不承担相关法律责任。其著作权各归其原作者或其出版社所有。如发现本站有涉嫌抄袭侵权/违法违规的内容,侵犯到您的权益,请在线联系站长,一经查实,本站将立刻删除。 本文来自网络,若有侵权,请联系删除,如若转载,请注明出处:https://itzsg.com/98646.html