欢迎大家来到IT世界,在知识的湖畔探索吧!
最强总结!数据库开窗函数完全指南!!
今天给大家总结的是SQL Server/MySQL/Oracle这三个关系数据库的函数内容,包含常用和不常用的。
这些总结都是此前整理好后保存的,最近集中发布,觉得有帮助,记得三连(点赞+转发+在看),笔者才会更有动力继续发布。此外,大家也可以留言需要哪方面的总结。
- 字符串函数
- 数值函数
- 日期时间函数
- 条件和控制函数
- 窗口函数
- JSON函数(MySQL 5.7+)
- 加密和安全函数
- XML函数(SQL Server)
- 正则表达式函数
- 系统信息函数
- 高级聚合函数
- 统计和数学函数
- 字符串模式匹配函数
- 条件和流程控制增强
- 表分析函数
- 实用复合函数示例
1. 字符串函数
1.1 基础字符串函数
- LENGTH/LEN/LENGTH – 获取字符串长度
-- MySQL SELECT LENGTH('Hello World'); -- 11 -- SQL Server SELECT LEN('Hello World'); -- 11 -- Oracle SELECT LENGTH('Hello World') FROM DUAL; -- 11
欢迎大家来到IT世界,在知识的湖畔探索吧!
- CHAR_LENGTH – 获取字符数(区别于字节长度)
欢迎大家来到IT世界,在知识的湖畔探索吧!-- MySQL & Oracle SELECT CHAR_LENGTH('你好'); -- 2
- SUBSTRING/SUBSTR – 截取字符串
-- MySQL & SQL Server SELECT SUBSTRING('Hello World', 1, 5); -- 'Hello' SELECT SUBSTRING('Hello World', -5); -- 'World' -- Oracle SELECT SUBSTR('Hello World', 1, 5) FROM DUAL;
- LEFT/RIGHT – 从左/右截取
欢迎大家来到IT世界,在知识的湖畔探索吧!-- MySQL & SQL Server SELECT LEFT('Hello World', 5); -- 'Hello' SELECT RIGHT('Hello World', 5); -- 'World'
- REPLACE – 替换字符串
-- 所有数据库通用 SELECT REPLACE('Hello World', 'World', 'SQL'); -- 'Hello SQL'
- STUFF – 字符串替换(SQL Server特有)
SELECT STUFF('Hello World', 1, 5, 'Hi'); -- 'Hi World'
- POSITION/INSTR/CHARINDEX – 查找子字符串位置
-- MySQL SELECT POSITION('World' IN 'Hello World'); -- 7 -- Oracle SELECT INSTR('Hello World', 'World') FROM DUAL; -- 7 -- SQL Server SELECT CHARINDEX('World', 'Hello World'); -- 7
- REVERSE – 反转字符串
-- 所有数据库 SELECT REVERSE('Hello'); -- 'olleH'
- SPACE – 生成空格字符串
-- SQL Server & MySQL SELECT 'Hello' + SPACE(1) + 'World'; -- 'Hello World'
- REPEAT/REPLICATE – 重复字符串
-- MySQL SELECT REPEAT('SQL', 3); -- 'SQLSQLSQL' -- SQL Server SELECT REPLICATE('SQL', 3); -- 'SQLSQLSQL'
1.2 高级字符串函数
- FORMAT – 格式化字符串
-- MySQL & SQL Server SELECT FORMAT(.789, 2); -- '123,456.79'
- STRING_SPLIT(SQL Server)/SPLIT_STRING(MySQL) – 字符串分割
-- SQL Server SELECT value FROM STRING_SPLIT('a,b,c', ','); -- MySQL SELECT SUBSTRING_INDEX('a,b,c', ',', 1); -- 'a'
- GROUP_CONCAT/STRING_AGG – 字符串聚合
-- MySQL SELECT GROUP_CONCAT(name SEPARATOR ',') FROM employees; -- SQL Server SELECT STRING_AGG(name, ',') FROM employees; -- Oracle SELECT LISTAGG(name, ',') WITHIN GROUP (ORDER BY name) FROM employees;
2. 数值函数
2.1 基础数学函数
- ROUND/TRUNC/TRUNCATE – 截断
-- 所有数据库 SELECT ROUND(123.456, 2); -- 123.46 -- Oracle SELECT TRUNC(123.456, 2) FROM DUAL; -- 123.45 -- MySQL SELECT TRUNCATE(123.456, 2); -- 123.45
- MOD – 取模
-- 所有数据库 SELECT MOD(10, 3); -- 1
- SQRT – 平方根
SELECT SQRT(16); -- 4
- SIGN – 获取数字符号
SELECT SIGN(-10); -- -1 SELECT SIGN(10); -- 1 SELECT SIGN(0); -- 0
2.2 高级数学函数
- LOG/LOG10/LN – 对数运算
SELECT LOG(10, 100); -- 2 SELECT LOG10(100); -- 2 SELECT LN(2.7); -- 0.993
- EXP – 指数运算
SELECT EXP(1); -- 2.9045
- RAND/RANDOM – 随机数
-- MySQL & SQL Server SELECT RAND(); -- Oracle SELECT DBMS_RANDOM.VALUE FROM DUAL;
3. 日期时间函数
3.1 获取日期时间
- NOW/GETDATE/SYSDATE – 当前日期时间
-- MySQL SELECT NOW(); -- SQL Server SELECT GETDATE(); -- Oracle SELECT SYSDATE FROM DUAL;
- CURDATE/CURRENT_DATE – 当前日期
-- MySQL SELECT CURDATE(); -- Oracle & SQL Server SELECT CURRENT_DATE;
- CURTIME/CURRENT_TIME – 当前时间
-- MySQL SELECT CURTIME(); -- Oracle & SQL Server SELECT CURRENT_TIME;
3.2 日期时间处理
- DATE_ADD/DATEADD – 日期加减
-- MySQL SELECT DATE_ADD('2024-03-12', INTERVAL 1 DAY); SELECT DATE_ADD('2024-03-12', INTERVAL 1 MONTH); SELECT DATE_ADD('2024-03-12', INTERVAL 1 YEAR); -- SQL Server SELECT DATEADD(day, 1, '2024-03-12'); SELECT DATEADD(month, 1, '2024-03-12'); SELECT DATEADD(year, 1, '2024-03-12');
- DATE_FORMAT/FORMAT – 日期格式化
-- MySQL SELECT DATE_FORMAT('2024-03-12', '%Y年%m月%d日'); -- '2024年03月12日' -- SQL Server SELECT FORMAT(GETDATE(), 'yyyy年MM月dd日');
- EXTRACT/DATEPART – 提取日期部分
-- MySQL & Oracle SELECT EXTRACT(YEAR FROM '2024-03-12'); SELECT EXTRACT(MONTH FROM '2024-03-12'); SELECT EXTRACT(DAY FROM '2024-03-12'); -- SQL Server SELECT DATEPART(year, '2024-03-12'); SELECT DATEPART(month, '2024-03-12'); SELECT DATEPART(day, '2024-03-12');
- LAST_DAY – 获取月末日期
-- MySQL & Oracle SELECT LAST_DAY('2024-03-12'); -- '2024-03-31'
4. 条件和控制函数
- IF/IIF – 条件判断
-- MySQL SELECT IF(1 > 0, 'True', 'False'); -- SQL Server SELECT IIF(1 > 0, 'True', 'False');
- IFNULL/ISNULL/NVL – NULL值处理
-- MySQL SELECT IFNULL(NULL, 'Default'); -- SQL Server SELECT ISNULL(NULL, 'Default'); -- Oracle SELECT NVL(NULL, 'Default') FROM DUAL;
- NULLIF – 相等返回NULL
SELECT NULLIF(10, 10); -- NULL SELECT NULLIF(10, 20); -- 10
- GREATEST/LEAST – 最大最小值
-- MySQL & Oracle SELECT GREATEST(1, 2, 3, 4, 5); -- 5 SELECT LEAST(1, 2, 3, 4, 5); -- 1
5. 窗口函数
- ROW_NUMBER/RANK/DENSE_RANK – 排序
SELECT name, salary, ROW_NUMBER() OVER (ORDER BY salary DESC) as row_num, RANK() OVER (ORDER BY salary DESC) as rank_num, DENSE_RANK() OVER (ORDER BY salary DESC) as dense_rank_num FROM employees;
- FIRST_VALUE/LAST_VALUE – 首尾值
SELECT name, department, salary, FIRST_VALUE(salary) OVER (PARTITION BY department ORDER BY salary DESC) as highest_salary, LAST_VALUE(salary) OVER (PARTITION BY department ORDER BY salary DESC RANGE BETWEEN UNBOUNDED PRECEDING AND UNBOUNDED FOLLOWING) as lowest_salary FROM employees;
- LAG/LEAD – 前后行
SELECT name, department, salary, LAG(salary) OVER (PARTITION BY department ORDER BY salary) as prev_salary, LEAD(salary) OVER (PARTITION BY department ORDER BY salary) as next_salary FROM employees;
- NTILE – 分组
SELECT name, salary, NTILE(4) OVER (ORDER BY salary) as quartile FROM employees;
6. JSON函数(MySQL 5.7+)
- JSON_EXTRACT – 提取JSON值
SELECT JSON_EXTRACT('{"name": "John", "age": 30}', '$.name'); -- "John"
- JSON_OBJECT – 创建JSON对象
SELECT JSON_OBJECT('name', 'John', 'age', 30);
- JSON_ARRAY – 创建JSON数组
SELECT JSON_ARRAY(1, 2, 3, 4, 5);
- JSON_CONTAINS – 检查JSON包含
SELECT JSON_CONTAINS('{"a": 1, "b": 2}', '1', '$.a'); -- 1
7. 加密和安全函数
- MD5 – MD5加密
-- MySQL & SQL Server SELECT MD5('password');
- SHA1/SHA2 – SHA加密
-- MySQL SELECT SHA1('password'); SELECT SHA2('password', 256);
- ENCRYPT/DECRYPT – 加密解密
-- MySQL SET @key = 'secret_key'; SET @encrypted = AES_ENCRYPT('text', @key); SELECT AES_DECRYPT(@encrypted, @key);
8. XML函数(SQL Server)
- FOR XML PATH – 生成XML
SELECT name, age FROM employees FOR XML PATH('employee'), ROOT('employees')
- XML数据类型方法
DECLARE @xml XML SET @xml = '<root><child>value</child></root>' SELECT @xml.value('(/root/child)[1]', 'varchar(50)')
9. 正则表达式函数
- REGEXP/RLIKE – 正则匹配(MySQL)
SELECT 'hello' REGEXP '^h'; -- 1 SELECT 'hello' RLIKE 'l+'; -- 1
- REGEXP_LIKE – 正则匹配(Oracle)
SELECT * FROM employees WHERE REGEXP_LIKE(email, '^[A-Za-z]+@[A-Za-z]+\.[A-Za-z]{2,4}#39;);
10. 系统信息函数
- VERSION – 数据库版本
-- MySQL SELECT VERSION(); -- SQL Server SELECT @@VERSION; -- Oracle SELECT * FROM V$VERSION;
- USER/CURRENT_USER – 当前用户
-- 所有数据库 SELECT USER; SELECT CURRENT_USER;
- DATABASE/DB_NAME – 当前数据库
-- MySQL SELECT DATABASE(); -- SQL Server SELECT DB_NAME();
11. 高级聚合函数
- GROUPING SETS – 多维度聚合
SELECT department, location, COUNT(*) FROM employees GROUP BY GROUPING SETS ( (department, location), (department), (location), () );
- CUBE – 所有可能的组合
SELECT department, location, COUNT(*) FROM employees GROUP BY CUBE (department, location);
- ROLLUP – 层次聚合
SELECT COALESCE(department, 'Total') as department, COALESCE(location, 'Subtotal') as location, COUNT(*) as employee_count, AVG(salary) as avg_salary FROM employees GROUP BY ROLLUP (department, location);
- PIVOT – 行转列
-- SQL Server SELECT * FROM ( SELECT department, location, salary FROM employees ) AS SourceTable PIVOT ( AVG(salary) FOR location IN ([New York], [London], [Tokyo]) ) AS PivotTable;
12. 统计和数学函数
- PERCENTILE_CONT/PERCENTILE_DISC – 百分位数
SELECT PERCENTILE_CONT(0.5) WITHIN GROUP (ORDER BY salary) as median_salary, PERCENTILE_DISC(0.5) WITHIN GROUP (ORDER BY salary) as discrete_median FROM employees;
- CORR – 相关系数
SELECT CORR(salary, performance_score) FROM employees;
- STDDEV/VARIANCE – 标准差和方差
SELECT department, AVG(salary) as avg_salary, STDDEV(salary) as salary_stddev, VARIANCE(salary) as salary_variance FROM employees GROUP BY department;
- FIRST/LAST – 组内第一个/最后一个值
-- Oracle SELECT department, FIRST_VALUE(salary) OVER (PARTITION BY department ORDER BY hire_date) as first_salary, LAST_VALUE(salary) OVER ( PARTITION BY department ORDER BY hire_date RANGE BETWEEN UNBOUNDED PRECEDING AND UNBOUNDED FOLLOWING ) as last_salary FROM employees;
13. 字符串模式匹配函数
- LIKE模式匹配增强
-- 复杂LIKE模式 SELECT * FROM employees WHERE name LIKE '[A-M]%' -- SQL Server, 以A到M开头的名字 AND email LIKE '%@__%.__%'; -- 标准email模式
14. 条件和流程控制增强
- CHOOSE – 索引选择
-- SQL Server SELECT CHOOSE(2, 'First', 'Second', 'Third'); -- 返回 'Second'
- 复杂CASE表达式
SELECT employee_name, salary, CASE WHEN salary <= (SELECT AVG(salary) FROM employees) THEN 'Below Average' WHEN salary <= (SELECT AVG(salary) + STDDEV(salary) FROM employees) THEN 'Average' WHEN salary <= (SELECT AVG(salary) + 2*STDDEV(salary) FROM employees) THEN 'Above Average' ELSE 'Exceptional' END as salary_category FROM employees;
15. 表分析函数
- PERCENT_RANK – 百分比排名
SELECT name, salary, PERCENT_RANK() OVER (ORDER BY salary) as salary_percentile FROM employees;
- CUME_DIST – 累积分布
SELECT name, salary, CUME_DIST() OVER (ORDER BY salary) as salary_distribution FROM employees;
16. 实用复合函数示例
- 年龄计算
-- MySQL SELECT name, birthdate, TIMESTAMPDIFF(YEAR, birthdate, CURDATE()) as age, DATE_ADD(birthdate, INTERVAL TIMESTAMPDIFF(YEAR, birthdate, CURDATE()) YEAR) as last_birthday, DATE_ADD(birthdate, INTERVAL TIMESTAMPDIFF(YEAR, birthdate, CURDATE()) + 1 YEAR) as next_birthday FROM employees;
- 工龄分析
SELECT name, hire_date, CASE WHEN DATEDIFF(YEAR, hire_date, GETDATE()) < 2 THEN 'Junior' WHEN DATEDIFF(YEAR, hire_date, GETDATE()) < 5 THEN 'Intermediate' WHEN DATEDIFF(YEAR, hire_date, GETDATE()) < 10 THEN 'Senior' ELSE 'Expert' END as experience_level FROM employees;
- 薪资分析
WITH salary_stats AS ( SELECT department, AVG(salary) as avg_salary, STDDEV(salary) as salary_stddev FROM employees GROUP BY department ) SELECT e.name, e.department, e.salary, s.avg_salary, (e.salary - s.avg_salary) / s.salary_stddev as z_score, PERCENT_RANK() OVER (PARTITION BY e.department ORDER BY e.salary) as dept_percentile FROM employees e JOIN salary_stats s ON e.department = s.department;
- 考勤分析
WITH daily_attendance AS ( SELECT employee_id, attendance_date, check_in_time, check_out_time, CASE WHEN check_in_time > '09:00:00' THEN 'Late' WHEN check_out_time < '17:00:00' THEN 'Early Leave' ELSE 'Normal' END as attendance_status FROM attendance ) SELECT e.name, COUNT(*) as total_days, SUM(CASE WHEN a.attendance_status = 'Late' THEN 1 ELSE 0 END) as late_days, SUM(CASE WHEN a.attendance_status = 'Early Leave' THEN 1 ELSE 0 END) as early_leave_days, FORMAT(COUNT(*) * 1.0 / (SELECT COUNT(DISTINCT attendance_date) FROM attendance), 'P') as attendance_rate FROM employees e JOIN daily_attendance a ON e.id = a.employee_id GROUP BY e.name;
- 销售分析
WITH monthly_sales AS ( SELECT YEAR(sale_date) as year, MONTH(sale_date) as month, SUM(amount) as total_sales, COUNT(DISTINCT customer_id) as customer_count FROM sales GROUP BY YEAR(sale_date), MONTH(sale_date) ) SELECT year, month, total_sales, customer_count, total_sales / customer_count as avg_customer_value, LAG(total_sales) OVER (ORDER BY year, month) as prev_month_sales, total_sales - LAG(total_sales) OVER (ORDER BY year, month) as sales_growth, FORMAT((total_sales - LAG(total_sales) OVER (ORDER BY year, month)) / LAG(total_sales) OVER (ORDER BY year, month), 'P') as growth_rate FROM monthly_sales;
免责声明:本站所有文章内容,图片,视频等均是来源于用户投稿和互联网及文摘转载整编而成,不代表本站观点,不承担相关法律责任。其著作权各归其原作者或其出版社所有。如发现本站有涉嫌抄袭侵权/违法违规的内容,侵犯到您的权益,请在线联系站长,一经查实,本站将立刻删除。 本文来自网络,若有侵权,请联系删除,如若转载,请注明出处:https://itzsg.com/89831.html