欢迎大家来到IT世界,在知识的湖畔探索吧!
分享兴趣,传播快乐,
增长见闻,留下美好!
亲爱的您,这里是LearningYard新学苑。
今天小编为大家带来的是好学高数(五):微分的中值定理。
Share interest, spread happiness, increase knowledge,
and leave a beautiful place!
Dear you, this is LearningYard.
Today’s edition brings you the Mean Value Theorem of Differential.
中值定理
一、罗尔定理
(1)f(x)在闭区间[a ,b]上连续;
(2)f(x)在开区间(a,b) 内可导;
(3)f(x)在区间端点的函数值相等,即f(a)=f(b) ,
那么在(a,b) 内至少有一点ξ (a<ξ<b),使得函数f(x) 在该点的导数等于零,即f'(ξ)=0。
(可用来证明唯一性)
1、 Rolle’s theorem
(1) f (x) is continuous on the closed interval [a, b];
(2) F (x) is derivable in the open interval (a, b);
(3) The function values of f (x) at the end of the interval are equal, that is, f (a)=f (b), so there is at least one point in (a, b) ξ (a< ξ< b) , so that the derivative of function f (x) at this point is equal to zero, that is, f ‘( ξ)= 0 (can be used to prove uniqueness)
二、拉格朗日中值定理
三、柯西中值定理(参数方程)
洛必达法则
适用对象:0比0型、无穷比无穷型
当遇到无穷*0型,将其中一个乘数转化为分母,再进行求导。
Applicable objects: 0 to 0 type, infinite to infinite type When encountering infinite * 0 type, convert one of the multipliers to the denominator, and then take the derivative.
泰勒公式
(做题时使用频率小)
(Less frequently used in questions)
END
今天的分享就到这里了,如果您对文章有独特的想法,欢迎给我们留言。
让我们相约明天,祝您今天过得开心快乐!
That’s it for today’s sharing. If you have a unique idea about the article.please leave us a message.
Let us meet tomorrow I wish you a happy day today!
文案&排版:易春秀
审核:闫庆红
免责声明:本站所有文章内容,图片,视频等均是来源于用户投稿和互联网及文摘转载整编而成,不代表本站观点,不承担相关法律责任。其著作权各归其原作者或其出版社所有。如发现本站有涉嫌抄袭侵权/违法违规的内容,侵犯到您的权益,请在线联系站长,一经查实,本站将立刻删除。 本文来自网络,若有侵权,请联系删除,如若转载,请注明出处:https://itzsg.com/86815.html