「矩阵的逆/逆变换」-图解线性代数 06

「矩阵的逆/逆变换」-图解线性代数 06这次我们来看如何把矩阵A经过变换后的向量再还原回去。观察下面如何从变换后的向量还原为向量的过程。>*变换后线性空间还是完整的二维空间;。

欢迎大家来到IT世界,在知识的湖畔探索吧!

这次我们来看如何把矩阵 A 经过变换后的向量再还原回去. 观察下面如何从变换后的向量(-1.5, 2) 还原为向量 (1, 0.5) 的过程:

「矩阵的逆/逆变换」-图解线性代数 06

注意观察要点:

  • 变换后线性空间还是完整的二维空间;

  • 变换后的行列式为不等于 0;

  • 还原后仅有一个向量与之对应;

整个还原的变换实际上对应了另一个线性变换, 称为矩阵的逆(Inverse), 记为 A^(-1).

矩阵与它的逆矩阵相乘, 那就是先做了一次变换, 然后在还原回来, 这两个连续的变换作用就是矩阵的乘法, 相当于什么都没有改变, 这个没有进行任何改变的变换, 就是上次说提到的单位矩阵.

「矩阵的逆/逆变换」-图解线性代数 06

利用这个性质, 我们可以通过在 Ax=V 两边同乘 A 的逆矩阵来求出变换前的向量 x:

「矩阵的逆/逆变换」-图解线性代数 06

矩阵的逆是否一定存在?

那么问题在于逆矩阵是否一定能找得到呢? 想象当 det(A) = 0 时候, 也就是代表矩阵的变换将空间压缩到更低的维度上, 此时没有逆矩阵. 在二维平面中变换后空间被压缩到原点以及被压缩为一条直线都是不存在相应的逆矩阵. 或者说没有办法找到对应的映射可以将一个点或一条线还原为平面.

「矩阵的逆/逆变换」-图解线性代数 06

类似地, 对于三维空间中, 如果一个变换将空间压缩为一个平面, 一条直线或原点, 也就是都对应 det(A) = 0 (体积为0)时, 那么也没有逆变换. 请看下面矩阵将三维空间压缩为平面的情况:

「矩阵的逆/逆变换」-图解线性代数 06

对角矩阵的情况

对角矩阵对应的变换就是沿着坐标轴伸缩变换, 那么还原就非常简单了, 只需要将各坐标轴伸缩为倒数倍就好了.

但注意即使不存在逆变换, 但对应的 x 仍然可能存在. 当一个变换将空间压缩到一条直线, 但是向量 v 刚刚好就在这条直线上. 如下面矩阵 A 将空间压缩成一条直线, (红色)向量 v (1, 0.5) 因为恰好落在该条线上, 所以相应的 x 为 (0.25,-0.25) .

「矩阵的逆/逆变换」-图解线性代数 06

上面就是本次图解线性代数所回顾的知识点. 好了, 现在让我们在下一篇的中再见!

「矩阵的逆/逆变换」-图解线性代数 06

免责声明:本站所有文章内容,图片,视频等均是来源于用户投稿和互联网及文摘转载整编而成,不代表本站观点,不承担相关法律责任。其著作权各归其原作者或其出版社所有。如发现本站有涉嫌抄袭侵权/违法违规的内容,侵犯到您的权益,请在线联系站长,一经查实,本站将立刻删除。 本文来自网络,若有侵权,请联系删除,如若转载,请注明出处:https://itzsg.com/77148.html

(0)

相关推荐

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

联系我们YX

mu99908888

在线咨询: 微信交谈

邮件:itzsgw@126.com

工作时间:时刻准备着!

关注微信