欢迎大家来到IT世界,在知识的湖畔探索吧!
秩是考研数学线性代数的最重要内容之,下面小编为大家总结有关向量的秩,极大线性无关组和正交矩阵的求解方法。
一、求极大线性无关组的步骤:
- 将向量组作为列向量组成矩阵A(如果是行向量,则转置后再计算);
- 对矩阵A作初等行变换,化为阶梯型矩阵,阶梯型矩阵中非零行的个数即为向量组的秩;
- 在阶梯型矩阵中标出每个非零行的主元,主元所在列即对应原向量组的一个极大线性无关组
注意:向量组的极大线性无关组不止一个;注意只能做行变换。
二、向量组的秩
求向量组秩的步骤:
- 将向量组作为列向量组成矩阵A(如果是行向量,则转置后再计算);
- 对矩阵A作初等行变换,化为阶梯型矩阵,阶梯型矩阵中非零行的个数即为向量组的秩;
关于向量组的秩,还有以下计算规律:
三、正交化和正交矩阵
一组线性无关向量组的正交规范化方法步骤如下:
题型一:求向量组的秩和极大线性无关组
例1:
解:按照求向量组的秩和极大线性无关组的方法进行求解:
题型二:正交化和正交矩阵
例2:
解:利用向量正交的定义求解。
免责声明:本站所有文章内容,图片,视频等均是来源于用户投稿和互联网及文摘转载整编而成,不代表本站观点,不承担相关法律责任。其著作权各归其原作者或其出版社所有。如发现本站有涉嫌抄袭侵权/违法违规的内容,侵犯到您的权益,请在线联系站长,一经查实,本站将立刻删除。 本文来自网络,若有侵权,请联系删除,如若转载,请注明出处:https://itzsg.com/76499.html