欢迎大家来到IT世界,在知识的湖畔探索吧!
人生苦短,就用 Python。
在 Kaggle 最新发布的全球数据科学/机器学习现状报告中,来自 50 多个国家的 16000 多位从业者纷纷向新手们推荐 Python 语言,用以学习机器学习。
那么,用Python实现出来的机器学习算法都是什么样子呢?刚好在 GitHub 上发现了东南大学研究生“Lawlite”的一个项目——机器学习算法的Python实现,下面从线性回归到反向传播算法、从SVM到K-means聚类算法,咱们一一来分析其中的Python代码。
目录
- 一、线性回归
- 1、代价函数
- 2、梯度下降算法
- 3、均值归一化
- 4、最终运行结果
- 5、使用scikit-learn库中的线性模型实现
- 二、逻辑回归
- 1、代价函数
- 2、梯度
- 3、正则化
- 4、S型函数(即)
- 5、映射为多项式
- 6、使用的优化方法
- 7、运行结果
- 8、使用scikit-learn库中的逻辑回归模型实现
- 逻辑回归_手写数字识别_OneVsAll
- 1、随机显示100个数字
- 2、OneVsAll
- 3、手写数字识别
- 4、预测
- 5、运行结果
- 6、使用scikit-learn库中的逻辑回归模型实现
- 三、BP神经网络
- 1、神经网络model
- 2、代价函数
- 3、正则化
- 4、反向传播BP
- 5、BP可以求梯度的原因
- 6、梯度检查
- 7、权重的随机初始化
- 8、预测
- 9、输出结果
- 四、SVM支持向量机
- 1、代价函数
- 2、Large Margin
- 3、SVM Kernel(核函数)
- 4、使用中的模型代码
- 5、运行结果
- 五、K-Means聚类算法
- 1、聚类过程
- 2、目标函数
- 3、聚类中心的选择
- 4、聚类个数K的选择
- 5、应用——图片压缩
- 6、使用scikit-learn库中的线性模型实现聚类
- 7、运行结果
- 六、PCA主成分分析(降维)
- 1、用处
- 2、2D–>1D,nD–>kD
- 3、主成分分析PCA与线性回归的区别
- 4、PCA降维过程
- 5、数据恢复
- 6、主成分个数的选择(即要降的维度)
- 7、使用建议
- 8、运行结果
- 9、使用scikit-learn库中的PCA实现降维
- 七、异常检测 Anomaly Detection
- 1、高斯分布(正态分布)
- 2、异常检测算法
- 3、评价的好坏,以及的选取
- 4、选择使用什么样的feature(单元高斯分布)
- 5、多元高斯分布
- 6、单元和多元高斯分布特点
- 7、程序运行结果
私信小编007即可获取小编精心整理的惊喜大礼包资料一份哦!
正文
一、线性回归
https://github.com/lawlite19/MachineLearning_Python/tree/master/LinearRegression
全部代码https://github.com/lawlite19/MachineLearning_Python/blob/master/LinearRegression/LinearRegression.py
1、代价函数
其中:
下面就是要求出theta,使代价最小,即代表我们拟合出来的方程距离真实值最近
共有m条数据,其中
代表我们要拟合出来的方程到真实值距离的平方,平方的原因是因为可能有负值,正负可能会抵消
前面有系数2的原因是下面求梯度是对每个变量求偏导,2可以消去
实现代码:
# 计算代价函数
def computerCost(X,y,theta):
m = len(y)
J = 0
J = (np.transpose(X*theta-y))*(X*theta-y)/(2*m) #计算代价J
return J
注意这里的X是真实数据前加了一列1,因为有theta(0)
2、梯度下降算法
代价函数对
求偏导得到:
所以对theta的更新可以写为:
其中
为学习速率,控制梯度下降的速度,一般取0.01,0.03,0.1,0.3…..
为什么梯度下降可以逐步减小代价函数?
假设函数f(x)
泰勒展开:f(x+△x)=f(x)+f'(x)*△x+o(△x),
令:△x=-α*f'(x) ,即负梯度方向乘以一个很小的步长α
将△x代入泰勒展开式中:f(x+x)=f(x)-α*[f'(x)]²+o(△x)
可以看出,α是取得很小的正数,[f'(x)]²也是正数,所以可以得出:f(x+△x)<=f(x)
所以沿着负梯度放下,函数在减小,多维情况一样。
# 梯度下降算法
def gradientDescent(X,y,theta,alpha,num_iters):
m = len(y)
n = len(theta)
temp = np.matrix(np.zeros((n,num_iters))) # 暂存每次迭代计算的theta,转化为矩阵形式
J_history = np.zeros((num_iters,1)) #记录每次迭代计算的代价值
for i in range(num_iters): # 遍历迭代次数
h = np.dot(X,theta) # 计算内积,matrix可以直接乘
temp[:,i] = theta – ((alpha/m)*(np.dot(np.transpose(X),h-y))) #梯度的计算
theta = temp[:,i]
J_history[i] = computerCost(X,y,theta) #调用计算代价函数
print ‘.’,
return theta,J_history
3、均值归一化
目的是使数据都缩放到一个范围内,便于使用梯度下降算法
其中
为所有此feture数据的平均值
可以是最大值-最小值,也可以是这个feature对应的数据的标准差
实现代码:
# 归一化feature
def featureNormaliza(X):
X_norm = np.array(X) #将X转化为numpy数组对象,才可以进行矩阵的运算
#定义所需变量
mu = np.zeros((1,X.shape[1]))
sigma = np.zeros((1,X.shape[1]))
mu = np.mean(X_norm,0) # 求每一列的平均值(0指定为列,1代表行)
sigma = np.std(X_norm,0) # 求每一列的标准差
for i in range(X.shape[1]): # 遍历列
X_norm[:,i] = (X_norm[:,i]-mu[i])/sigma[i] # 归一化
return X_norm,mu,sigma
注意预测的时候也需要均值归一化数据
4、最终运行结果
代价随迭代次数的变化
5、使用scikit-learn库中的线性模型实现
https://github.com/lawlite19/MachineLearning_Python/blob/master/LinearRegression/LinearRegression_scikit-learn.py
导入包
from sklearn import linear_model from sklearn.preprocessing import StandardScaler #引入缩放的包
归一化
# 归一化操作 scaler = StandardScaler() scaler.fit(X) x_train = scaler.transform(X) x_test = scaler.transform(np.array([1650,3]))
线性模型拟合
# 线性模型拟合 model = linear_model.LinearRegression() model.fit(x_train, y)
预测
#预测结果 result = model.predict(x_test)
二、逻辑回归
https://github.com/lawlite19/MachineLearning_Python/tree/master/LogisticRegression
全部代码
https://github.com/lawlite19/MachineLearning_Python/blob/master/LogisticRegression/LogisticRegression.py
1、代价函数
可以综合起来为:
其中:
为什么不用线性回归的代价函数表示,因为线性回归的代价函数可能是非凸的,对于分类问题,使用梯度下降很难得到最小值,上面的代价函数是凸函数
的图像如下,即y=1时:
可以看出,当
趋于1,y=1,与预测值一致,此时付出的代价cost趋于0,若
趋于0,y=1,此时的代价cost值非常大,我们最终的目的是最小化代价值
同理
的图像如下(y=0):
2、梯度
同样对代价函数求偏导:
可以看出与线性回归的偏导数一致
推导过程
3、正则化
目的是为了防止过拟合
在代价函数中加上一项
注意j是重1开始的,因为theta(0)为一个常数项,X中最前面一列会加上1列1,所以乘积还是theta(0),feature没有关系,没有必要正则化
正则化后的代价:
# 代价函数
def costFunction(initial_theta,X,y,inital_lambda):
m = len(y)
J = 0
h = sigmoid(np.dot(X,initial_theta)) # 计算h(z)
theta1 = initial_theta.copy() # 因为正则化j=1从1开始,不包含0,所以复制一份,前theta(0)值为0
theta1[0] = 0
temp = np.dot(np.transpose(theta1),theta1)
J = (-np.dot(np.transpose(y),np.log(h))-np.dot(np.transpose(1-y),np.log(1-h))+temp*inital_lambda/2)/m # 正则化的代价方程
return J
正则化后的代价的梯度
# 计算梯度
def gradient(initial_theta,X,y,inital_lambda):
m = len(y)
grad = np.zeros((initial_theta.shape[0]))
h = sigmoid(np.dot(X,initial_theta))# 计算h(z)
theta1 = initial_theta.copy()
theta1[0] = 0
grad = np.dot(np.transpose(X),h-y)/m+inital_lambda/m*theta1 #正则化的梯度
return grad
4、S型函数(即
)
实现代码:
# S型函数def sigmoid(z): h = np.zeros((len(z),1)) # 初始化,与z的长度一置 h = 1.0/(1.0+np.exp(-z)) return h
5、映射为多项式
因为数据的feture可能很少,导致偏差大,所以创造出一些feture结合
eg:映射为2次方的形式:
实现代码:
# 映射为多项式
def mapFeature(X1,X2):
degree = 3; # 映射的最高次方
out = np.ones((X1.shape[0],1)) # 映射后的结果数组(取代X)
”’
这里以degree=2为例,映射为1,x1,x2,x1^2,x1,x2,x2^2
”’
for i in np.arange(1,degree+1):
for j in range(i+1):
temp = X1**(i-j)*(X2**j) #矩阵直接乘相当于matlab中的点乘.*
out = np.hstack((out, temp.reshape(-1,1)))
return out
6、使用scipy的优化方法
梯度下降使用scipy中optimize中的fmin_bfgs函数
调用scipy中的优化算法fmin_bfgs(拟牛顿法Broyden-Fletcher-Goldfarb-Shanno
costFunction是自己实现的一个求代价的函数,
initial_theta表示初始化的值,
fprime指定costFunction的梯度
args是其余测参数,以元组的形式传入,最后会将最小化costFunction的theta返回
result = optimize.fmin_bfgs(costFunction, initial_theta, fprime=gradient, args=(X,y,initial_lambda))
7、运行结果
data1决策边界和准确度
data2决策边界和准确度
8、使用scikit-learn库中的逻辑回归模型实现
https://github.com/lawlite19/MachineLearning_Python/blob/master/LogisticRegression/LogisticRegression_scikit-learn.py
导入包
from sklearn.linear_model import LogisticRegression from sklearn.preprocessing import StandardScaler from sklearn.cross_validation import train_test_split import numpy as np
划分训练集和测试集
# 划分为训练集和测试集 x_train,x_test,y_train,y_test = train_test_split(X,y,test_size=0.2)
归一化
# 归一化 scaler = StandardScaler() scaler.fit(x_train) x_train = scaler.fit_transform(x_train) x_test = scaler.fit_transform(x_test)
逻辑回归
#逻辑回归 model = LogisticRegression() model.fit(x_train,y_train)
预测
# 预测 predict = model.predict(x_test) right = sum(predict == y_test) predict = np.hstack((predict.reshape(-1,1),y_test.reshape(-1,1))) # 将预测值和真实值放在一块,好观察 print predict print (‘测试集准确率:%f%%’%(right*100.0/predict.shape[0])) #计算在测试集上的准确度
逻辑回归_手写数字识别_OneVsAll
https://github.com/lawlite19/MachineLearning_Python/blob/master/LogisticRegression
全部代码
https://github.com/lawlite19/MachineLearning_Python/blob/master/LogisticRegression/LogisticRegression_OneVsAll.py
1、随机显示100个数字
我没有使用scikit-learn中的数据集,像素是20*20px,彩色图如下
灰度图:
实现代码:
# 显示100个数字
def display_data(imgData):
sum = 0
”’
显示100个数(若是一个一个绘制将会非常慢,可以将要画的数字整理好,放到一个矩阵中,显示这个矩阵即可)
– 初始化一个二维数组
– 将每行的数据调整成图像的矩阵,放进二维数组
– 显示即可
”’
pad = 1
display_array = -np.ones((pad+10*(20+pad),pad+10*(20+pad)))
for i in range(10):
for j in range(10):
display_array[pad+i*(20+pad):pad+i*(20+pad)+20,pad+j*(20+pad):pad+j*(20+pad)+20] = (imgData[sum,:].reshape(20,20,order=”F”)) # order=F指定以列优先,在matlab中是这样的,python中需要指定,默认以行
sum += 1
plt.imshow(display_array,cmap=’gray’) #显示灰度图像
plt.axis(‘off’)
plt.show()
2、OneVsAll
如何利用逻辑回归解决多分类的问题,OneVsAll就是把当前某一类看成一类,其他所有类别看作一类,这样有成了二分类的问题了
如下图,把途中的数据分成三类,先把红色的看成一类,把其他的看作另外一类,进行逻辑回归,然后把蓝色的看成一类,其他的再看成一类,以此类推…
可以看出大于2类的情况下,有多少类就要进行多少次的逻辑回归分类
3、手写数字识别
共有0-9,10个数字,需要10次分类
由于数据集y给出的是0,1,2…9的数字,而进行逻辑回归需要0/1的label标记,所以需要对y处理
说一下数据集,前500个是0,500-1000是1,…,所以如下图,处理后的y,前500行的第一列是1,其余都是0,500-1000行第二列是1,其余都是0….
然后调用梯度下降算法求解theta
实现代码:
# 求每个分类的theta,最后返回所有的all_theta
def oneVsAll(X,y,num_labels,Lambda):
# 初始化变量
m,n = X.shape
all_theta = np.zeros((n+1,num_labels)) # 每一列对应相应分类的theta,共10列
X = np.hstack((np.ones((m,1)),X)) # X前补上一列1的偏置bias
class_y = np.zeros((m,num_labels)) # 数据的y对应0-9,需要映射为0/1的关系
initial_theta = np.zeros((n+1,1)) # 初始化一个分类的theta
# 映射y
for i in range(num_labels):
class_y[:,i] = np.int32(y==i).reshape(1,-1) # 注意reshape(1,-1)才可以赋值
#np.savetxt(“class_y.csv”, class_y[0:600,:], delimiter=’,’)
”’遍历每个分类,计算对应的theta值”’
for i in range(num_labels):
result = optimize.fmin_bfgs(costFunction, initial_theta, fprime=gradient, args=(X,class_y[:,i],Lambda)) # 调用梯度下降的优化方法
all_theta[:,i] = result.reshape(1,-1) # 放入all_theta中
all_theta = np.transpose(all_theta)
return all_theta
4、预测
之前说过,预测的结果是一个概率值,利用学习出来的theta代入预测的S型函数中,每行的最大值就是是某个数字的最大概率,所在的列号就是预测的数字的真实值,因为在分类时,所有为0的将y映射在第一列,为1的映射在第二列,依次类推
实现代码:
# 预测
def predict_oneVsAll(all_theta,X):
m = X.shape[0]
num_labels = all_theta.shape[0]
p = np.zeros((m,1))
X = np.hstack((np.ones((m,1)),X)) #在X最前面加一列1
h = sigmoid(np.dot(X,np.transpose(all_theta))) #预测
”’
返回h中每一行最大值所在的列号
– np.max(h, axis=1)返回h中每一行的最大值(是某个数字的最大概率)
– 最后where找到的最大概率所在的列号(列号即是对应的数字)
”’
p = np.array(np.where(h[0,:] == np.max(h, axis=1)[0]))
for i in np.arange(1, m):
t = np.array(np.where(h[i,:] == np.max(h, axis=1)[i]))
p = np.vstack((p,t))
return p
5、运行结果
10次分类,在训练集上的准确度:
6、使用scikit-learn库中的逻辑回归模型实现
https://github.com/lawlite19/MachineLearning_Python/blob/master/LogisticRegression/LogisticRegression_OneVsAll_scikit-learn.py
1、导入包
from scipy import io as spio import numpy as np from sklearn import svm from sklearn.linear_model import LogisticRegression
2、加载数据
data = loadmat_data(“data_digits.mat”) X = data[‘X’] # 获取X数据,每一行对应一个数字20x20px y = data[‘y’] # 这里读取mat文件y的shape=(5000, 1) y = np.ravel(y) # 调用sklearn需要转化成一维的(5000,)
3、拟合模型
model = LogisticRegression() model.fit(X, y) # 拟合
4、预测
predict = model.predict(X) #预测 print u”预测准确度为:%f%%”%np.mean(np.float64(predict == y)*100)
5、输出结果(在训练集上的准确度)
三、BP神经网络
全部代码
https://github.com/lawlite19/MachineLearning_Python/blob/master/NeuralNetwok/NeuralNetwork.py
1、神经网络model
先介绍个三层的神经网络,如下图所示
输入层(input layer)有三个units(
为补上的bias,通常设为1)
表示第j层的第i个激励,也称为为单元unit
为第j层到第j+1层映射的权重矩阵,就是每条边的权重
所以可以得到:
隐含层:
输出层
,
其中,S型函数
,也成为激励函数
可以看出
为3×4的矩阵,
为1×4的矩阵
==》j+1的单元数x(j层的单元数+1)
2、代价函数
假设最后输出的
,即代表输出层有K个单元
,
其中,
代表第i个单元输出与逻辑回归的代价函数
差不多,就是累加上每个输出(共有K个输出)
3、正则化
L–>所有层的个数
–>第l层unit的个数
正则化后的代价函数为
共有L-1层,然后是累加对应每一层的theta矩阵,注意不包含加上偏置项对应的theta(0)
正则化后的代价函数实现代码:
# 代价函数
def nnCostFunction(nn_params,input_layer_size,hidden_layer_size,num_labels,X,y,Lambda):
length = nn_params.shape[0] # theta的中长度
# 还原theta1和theta2
Theta1 = nn_params[0:hidden_layer_size*(input_layer_size+1)].reshape(hidden_layer_size,input_layer_size+1)
Theta2 = nn_params[hidden_layer_size*(input_layer_size+1):length].reshape(num_labels,hidden_layer_size+1)
# np.savetxt(“Theta1.csv”,Theta1,delimiter=’,’)
m = X.shape[0]
class_y = np.zeros((m,num_labels)) # 数据的y对应0-9,需要映射为0/1的关系
# 映射y
for i in range(num_labels):
class_y[:,i] = np.int32(y==i).reshape(1,-1) # 注意reshape(1,-1)才可以赋值
”’去掉theta1和theta2的第一列,因为正则化时从1开始”’
Theta1_colCount = Theta1.shape[1]
Theta1_x = Theta1[:,1:Theta1_colCount]
Theta2_colCount = Theta2.shape[1]
Theta2_x = Theta2[:,1:Theta2_colCount]
# 正则化向theta^2
term = np.dot(np.transpose(np.vstack((Theta1_x.reshape(-1,1),Theta2_x.reshape(-1,1)))),np.vstack((Theta1_x.reshape(-1,1),Theta2_x.reshape(-1,1))))
”’正向传播,每次需要补上一列1的偏置bias”’
a1 = np.hstack((np.ones((m,1)),X))
z2 = np.dot(a1,np.transpose(Theta1))
a2 = sigmoid(z2)
a2 = np.hstack((np.ones((m,1)),a2))
z3 = np.dot(a2,np.transpose(Theta2))
h = sigmoid(z3)
”’代价”’
J = -(np.dot(np.transpose(class_y.reshape(-1,1)),np.log(h.reshape(-1,1)))+np.dot(np.transpose(1-class_y.reshape(-1,1)),np.log(1-h.reshape(-1,1)))-Lambda*term/2)/m
return np.ravel(J)
4、反向传播BP
上面正向传播可以计算得到J(θ),使用梯度下降法还需要求它的梯度
BP反向传播的目的就是求代价函数的梯度
假设4层的神经网络,
记为–>l层第j个单元的误差
《===》
(向量化)
没有
,因为对于输入没有误差
因为S型函数
的倒数为:
,
所以上面的
和
可以在前向传播中计算出来
反向传播计算梯度的过程为:
(
是大写的
)
for i=1-m:-
-正向传播计算
(l=2,3,4…L)
-反向计算
、
…
;
–
–
最后
,即得到代价函数的梯度
实现代码:
# 梯度
def nnGradient(nn_params,input_layer_size,hidden_layer_size,num_labels,X,y,Lambda):
length = nn_params.shape[0]
Theta1 = nn_params[0:hidden_layer_size*(input_layer_size+1)].reshape(hidden_layer_size,input_layer_size+1)
Theta2 = nn_params[hidden_layer_size*(input_layer_size+1):length].reshape(num_labels,hidden_layer_size+1)
m = X.shape[0]
class_y = np.zeros((m,num_labels)) # 数据的y对应0-9,需要映射为0/1的关系
# 映射y
for i in range(num_labels):
class_y[:,i] = np.int32(y==i).reshape(1,-1) # 注意reshape(1,-1)才可以赋值
”’去掉theta1和theta2的第一列,因为正则化时从1开始”’
Theta1_colCount = Theta1.shape[1]
Theta1_x = Theta1[:,1:Theta1_colCount]
Theta2_colCount = Theta2.shape[1]
Theta2_x = Theta2[:,1:Theta2_colCount]
Theta1_grad = np.zeros((Theta1.shape)) #第一层到第二层的权重
Theta2_grad = np.zeros((Theta2.shape)) #第二层到第三层的权重
Theta1[:,0] = 0;
Theta2[:,0] = 0;
”’正向传播,每次需要补上一列1的偏置bias”’
a1 = np.hstack((np.ones((m,1)),X))
z2 = np.dot(a1,np.transpose(Theta1))
a2 = sigmoid(z2)
a2 = np.hstack((np.ones((m,1)),a2))
z3 = np.dot(a2,np.transpose(Theta2))
h = sigmoid(z3)
”’反向传播,delta为误差,”’
delta3 = np.zeros((m,num_labels))
delta2 = np.zeros((m,hidden_layer_size))
for i in range(m):
delta3[i,:] = h[i,:]-class_y[i,:]
Theta2_grad = Theta2_grad+np.dot(np.transpose(delta3[i,:].reshape(1,-1)),a2[i,:].reshape(1,-1))
delta2[i,:] = np.dot(delta3[i,:].reshape(1,-1),Theta2_x)*sigmoidGradient(z2[i,:])
Theta1_grad = Theta1_grad+np.dot(np.transpose(delta2[i,:].reshape(1,-1)),a1[i,:].reshape(1,-1))
”’梯度”’
grad = (np.vstack((Theta1_grad.reshape(-1,1),Theta2_grad.reshape(-1,1)))+Lambda*np.vstack((Theta1.reshape(-1,1),Theta2.reshape(-1,1))))/m
return np.ravel(grad)
5、BP可以求梯度的原因
实际是利用了链式求导法则
因为下一层的单元利用上一层的单元作为输入进行计算
大体的推导过程如下,最终我们是想预测函数与已知的y非常接近,求均方差的梯度沿着此梯度方向可使代价函数最小化。可对照上面求梯度的过程。
求误差更详细的推导过程:
6、梯度检查
检查利用BP求的梯度是否正确
利用导数的定义验证:
求出来的数值梯度应该与BP求出的梯度非常接近
验证BP正确后就不需要再执行验证梯度的算法了
实现代码:
# 检验梯度是否计算正确
# 检验梯度是否计算正确
def checkGradient(Lambda = 0):
”’构造一个小型的神经网络验证,因为数值法计算梯度很浪费时间,而且验证正确后之后就不再需要验证了”’
input_layer_size = 3
hidden_layer_size = 5
num_labels = 3
m = 5
initial_Theta1 = debugInitializeWeights(input_layer_size,hidden_layer_size);
initial_Theta2 = debugInitializeWeights(hidden_layer_size,num_labels)
X = debugInitializeWeights(input_layer_size-1,m)
y = 1+np.transpose(np.mod(np.arange(1,m+1), num_labels))# 初始化y
y = y.reshape(-1,1)
nn_params = np.vstack((initial_Theta1.reshape(-1,1),initial_Theta2.reshape(-1,1))) #展开theta
”’BP求出梯度”’
grad = nnGradient(nn_params, input_layer_size, hidden_layer_size,
num_labels, X, y, Lambda)
”’使用数值法计算梯度”’
num_grad = np.zeros((nn_params.shape[0]))
step = np.zeros((nn_params.shape[0]))
e = 1e-4
for i in range(nn_params.shape[0]):
step[i] = e
loss1 = nnCostFunction(nn_params-step.reshape(-1,1), input_layer_size, hidden_layer_size,
num_labels, X, y,
Lambda)
loss2 = nnCostFunction(nn_params+step.reshape(-1,1), input_layer_size, hidden_layer_size,
num_labels, X, y,
Lambda)
num_grad[i] = (loss2-loss1)/(2*e)
step[i]=0
# 显示两列比较
res = np.hstack((num_grad.reshape(-1,1),grad.reshape(-1,1)))
print res
7、权重的随机初始化
神经网络不能像逻辑回归那样初始化theta为0,因为若是每条边的权重都为0,每个神经元都是相同的输出,在反向传播中也会得到同样的梯度,最终只会预测一种结果。
所以应该初始化为接近0的数
实现代码
# 随机初始化权重theta
def randInitializeWeights(L_in,L_out):
W = np.zeros((L_out,1+L_in)) # 对应theta的权重
epsilon_init = (6.0/(L_out+L_in))**0.5
W = np.random.rand(L_out,1+L_in)*2*epsilon_init-epsilon_init # np.random.rand(L_out,1+L_in)产生L_out*(1+L_in)大小的随机矩阵
return W
8、预测
正向传播预测结果
实现代码
# 预测
def predict(Theta1,Theta2,X):
m = X.shape[0]
num_labels = Theta2.shape[0]
#p = np.zeros((m,1))
”’正向传播,预测结果”’
X = np.hstack((np.ones((m,1)),X))
h1 = sigmoid(np.dot(X,np.transpose(Theta1)))
h1 = np.hstack((np.ones((m,1)),h1))
h2 = sigmoid(np.dot(h1,np.transpose(Theta2)))
”’
返回h中每一行最大值所在的列号
– np.max(h, axis=1)返回h中每一行的最大值(是某个数字的最大概率)
– 最后where找到的最大概率所在的列号(列号即是对应的数字)
”’
#np.savetxt(“h2.csv”,h2,delimiter=’,’)
p = np.array(np.where(h2[0,:] == np.max(h2, axis=1)[0]))
for i in np.arange(1, m):
t = np.array(np.where(h2[i,:] == np.max(h2, axis=1)[i]))
p = np.vstack((p,t))
return p
9、输出结果
梯度检查:
随机显示100个手写数字
显示theta1权重
训练集预测准确度
归一化后训练集预测准确度
由于篇幅有限就不全部发上来了。希望能帮到大家学习哦!
免责声明:本站所有文章内容,图片,视频等均是来源于用户投稿和互联网及文摘转载整编而成,不代表本站观点,不承担相关法律责任。其著作权各归其原作者或其出版社所有。如发现本站有涉嫌抄袭侵权/违法违规的内容,侵犯到您的权益,请在线联系站长,一经查实,本站将立刻删除。 本文来自网络,若有侵权,请联系删除,如若转载,请注明出处:https://itzsg.com/37028.html