欢迎大家来到IT世界,在知识的湖畔探索吧!
目录:
一.反射基础
二.反射的作用
三.反射机制执行的流程
一.反射基础
什么是反射?
反射使 Java 代码可以发现有关已加载类的字段,方法和构造函数的信息,并在安全性限制内使用反射对这些字段,方法和构造函数进行操作。
反射的概念是由Smith在1982年首次提出的,主要是指程序可以访问、检测和修改它本身状态或行为的一种能力。这一概念的提出很快引发了计算机科学领域关于应用反射性的研究。它首先被程序语言的设计领域所采用,并在Lisp和面向对象方面取得了成绩。其中LEAD/LEAD++ 、OpenC++ 、MetaXa和OpenJava等就是基于反射机制的语言。最近,反射机制也被应用到了视窗系统、操作系统和文件系统中。
Java中,反射是一种强大的工具。它使您能够创建灵活的代码,这些代码可以在运行时装配,无需在组件之间进行源代表链接。反射允许我们在编写与执行时,使我们的程序代码能够接入装载到JVM中的类的内部信息,而不是源代码中选定的类协作的代码。这使反射成为构建灵活的应用的主要工具。但需注意的是:如果使用不当,反射的成本很高。
简而言之,指在 Java 程序运行时
- 给定的一个类(Class)对象,通过反射获取这个类(Class)对象的所有成员结构。
- 给定的一个具体的对象,能够动态地调用它的方法及对任意属性值进行获取和赋值。
这种动态获取类的内容,创建对象、以及动态调用对象的方法及操作属性的机制为反射。即使该对象的类型在编译期间是未知,该类的 .class 文件不存在,也可以通过反射直接创建对象。
优势
- 增加程序的灵活性,避免将固有的逻辑程序写死到代码里
- 代码简洁,可读性强,可提高代码的复用率
劣势
- 相较直接调用,在量大的情景下反射性能下降
- 存在一些内部暴露和安全隐患
为什么要有反射
有了反射,我们可以做以下事情:
- 在运行时检查一个对象
- 在运行时,根据一个class构造一个对象
- 在运行时,检查一个对象的属性和方法
- 在运行时,调用一个对象的任意一个方法
- 在运行时,改变对象的构造函数,属性,方法的可见性等等
反射是很多框架的共有的方法:
- 例如JUnit,就是使用反射去找出那些带有@Test注解的方法,然后就利用反射在单元测试中调用这些方法
- 在web框架中,开发人员将他们定义实现的接口和类放到配置文件中,使用反射,他可以动态地在运行时自动初始化这些类和接口 例如,Spring中一般这样使用配置文件:
<bean id=“someID” class=“com.programcreek.Foo”>
<property name=“someField” value=“someValue” /></bean>
当Spring读取到bean文件的时候,会调用Class.forName(String)方法”com.programcreek.Foo”来初始化这个类,然后在使用反射正确的get到所配置的属性的set方法,并把相应的值set进去。
Servlet web 也是使用这种反射技术:
<servlet>
<servlet–name>someServlet</servlet–name>
<servlet–class>com.programcreek.WhyReflectionServlet</servlet–class><servlet>
反射的原理(类加载)
关于类加载机制,大家可以参考我的这篇文章:
深入理解JVM虚拟机——类的加载机制
深入理解JVM虚拟机——JVM是如何实现反射的?
类加载机制流程
类的加载
反射的原理图解
二. 反射的作用
一个类的成员包括以下三种:域信息、构造器信息、方法信息。而反射则可以在运行时动态获取到这些信息,在使用反射时,我们常用的类有以下五种。
Class类对象的获取
1、获得Class:主要有三种方法:
(1)Object–>getClass
(2)任何数据类型(包括基本的数据类型)都有一个“静态”的class属性
(3)通过class类的静态方法:forName(String className)(最常用)
package fanshe;
public class Fanshe {
public static void main(String[] args) {
//第一种方式获取Class对象
Student stu1 = new Student();//这一new 产生一个Student对象,一个Class对象。
Class stuClass = stu1.getClass();//获取Class对象
System.out.println(stuClass.getName());
//第二种方式获取Class对象
Class stuClass2 = Student.class;
System.out.println(stuClass == stuClass2);//判断第一种方式获取的Class对象和第二种方式获取的是否是同一个
//第三种方式获取Class对象
try {
Class stuClass3 = Class.forName("fanshe.Student");//注意此字符串必须是真实路径,就是带包名的类路径,包名.类名
System.out.println(stuClass3 == stuClass2);//判断三种方式是否获取的是同一个Class对象
} catch (ClassNotFoundException e) {
e.printStackTrace();
}
}
}
欢迎大家来到IT世界,在知识的湖畔探索吧!
注意,在运行期间,一个类,只有一个Class对象产生,所以打印结果都是true;
三种方式中,常用第三种,第一种对象都有了还要反射干什么,第二种需要导入类包,依赖太强,不导包就抛编译错误。一般都使用第三种,一个字符串可以传入也可以写在配置文件中等多种方法。
Class类的方法
getName、getCanonicalName与getSimpleName的区别:
- getSimpleName:只获取类名
- getName:类的全限定名,jvm中Class的表示,可以用于动态加载Class对象,例如Class.forName。
- getCanonicalName:返回更容易理解的表示,主要用于输出(toString)或log打印,大多数情况下和getName一样,但是在内部类、数组等类型的表示形式就不同了。
Constructor类及其获取对象方法
- Constructor提供了一个类的单个构造函数的信息和访问。
- Constructor允许在将实际参数与newInstance()与底层构造函数的形式参数进行匹配时进行扩展转换,但如果发生缩小转换,则抛出IllegalArgumentException 。
Constructor类的方法
获取Constructor对象是通过Class类中的方法获取的,Class类与Constructor相关的主要方法如下:
使用反射技术获取构造器对象并使用
欢迎大家来到IT世界,在知识的湖畔探索吧!@Testpublic void test2() throws NoSuchMethodException { Class<Student> sc = Student.class; // 1. 拿到所有的构造器 Constructor<?>[] constructors = sc.getDeclaredConstructors(); // 输出构造器的名称+参数个数 for (Constructor<?> constructor : constructors) { System.out.println(constructor.getName() + " 参数个数:" + constructor.getParameterCount() + "个"); } // 2. 拿到单个构造器 Constructor<Student> constructor = sc.getDeclaredConstructor(String.class, String.class); System.out.println(constructor.getName() + "参数个数:" + constructor.getParameterCount());}
使用反射技术获取构造器对象并使用获取到的内容创建出一个对象
反射得到构造器之后的作用仍是创建一个对象,如果说构造器是public,就可以直接new对象,如果说是构造器是私有的private,需要提前将构造器进行暴力反射,再进行构造对象。
反射是可以直接破换掉封装性的,私有的也是可以执行的。
Field类及其用法
Field 提供有关类或接口的单个字段的信息,以及对它的动态访问权限。反射的字段可能是一个类(静态)字段或实例字段。
Field类涉及的get方法
同样的道理,我们可以通过Class类的提供的方法来获取代表字段信息的Field对象,Class类与Field对象相关方法如下:
下面的代码演示了上述方法的使用过程
public class ReflectField {
public static void main(String[] args) throws ClassNotFoundException, NoSuchFieldException {
Class<?> clazz = Class.forName("reflect.Student");
//获取指定字段名称的Field类,注意字段修饰符必须为public而且存在该字段,
// 否则抛NoSuchFieldException
Field field = clazz.getField("age");
System.out.println("field:" + field);
//获取所有修饰符为public的字段,包含父类字段,注意修饰符为public才会获取
Field fields[] = clazz.getFields();
for (Field f : fields) {
System.out.println("f:" + f.getDeclaringClass());
}
System.out.println("================getDeclaredFields====================");
//获取当前类所字段(包含private字段),注意不包含父类的字段
Field fields2[] = clazz.getDeclaredFields();
for (Field f : fields2) {
System.out.println("f2:" + f.getDeclaringClass());
}
//获取指定字段名称的Field类,可以是任意修饰符的自动,注意不包含父类的字段
Field field2 = clazz.getDeclaredField("desc");
System.out.println("field2:" + field2);
}
/**
输出结果:
field:public int reflect.Person.age
f:public java.lang.String reflect.Student.desc
f:public int reflect.Person.age
f:public java.lang.String reflect.Person.name
================getDeclaredFields====================
f2:public java.lang.String reflect.Student.desc
f2:private int reflect.Student.score
field2:public java.lang.String reflect.Student.desc
*/
}
class Person {
public int age;
public String name;
//省略set和get方法}
class Student extends Person {
public String desc;
private int score;
//省略set和get方法
}
上述方法需要注意的是,如果我们不期望获取其父类的字段,则需使用Class类的getDeclaredField/getDeclaredFields方法来获取字段即可,倘若需要连带获取到父类的字段,那么请使用Class类的getField/getFields,但是也只能获取到public修饰的的字段,无法获取父类的私有字段。下面将通过Field类本身的方法对指定类属性赋值,代码演示如下:
//获取Class对象引用
Class<?> clazz = Class.forName(“reflect.Student”);
Student st= (Student) clazz.newInstance();
//获取父类public字段并赋值
Field ageField = clazz.getField(“age”);
ageField.set(st,18);
Field nameField = clazz.getField(“name”);
nameField.set(st,”Lily”);
//只获取当前类的字段,不获取父类的字段
Field descField = clazz.getDeclaredField(“desc”);
descField.set(st,”I am student”);Field scoreField = clazz.getDeclaredField(“score”);
//设置可访问,score是private的
scoreField.setAccessible(true);
scoreField.set(st,88);System.out.println(st.toString());
//输出结果:Student{age=18, name=’Lily ,desc=’I am student’, score=88}
//获取字段值System.out.println(scoreField.get(st));// 88
其中的set(Object obj, Object value)方法是Field类本身的方法,用于设置字段的值,而get(Object obj)则是获取字段的值,当然关于Field类还有其他常用的方法如下:
上述方法可能是较为常用的,事实上在设置值的方法上,Field类还提供了专门针对基本数据类型的方法,如setInt()/getInt()、setBoolean()/getBoolean、setChar()/getChar()等等方法,这里就不全部列出了,需要时查API文档即可。需要特别注意的是被final关键字修饰的Field字段是安全的,在运行时可以接收任何修改,但最终其实际值是不会发生改变的。
Method类及其用法
Method 提供关于类或接口上单独某个方法(以及如何访问该方法)的信息,所反映的方法可能是类方法或实例方法(包括抽象方法)。
Method类的主要方法
下面是Class类获取Method对象相关的方法:
同样通过案例演示上述方法:
欢迎大家来到IT世界,在知识的湖畔探索吧!import java.lang.reflect.Method;
public class ReflectMethod {
public static void main(String[] args) throws ClassNotFoundException, NoSuchMethodException {
Class clazz = Class.forName("reflect.Circle");
//根据参数获取public的Method,包含继承自父类的方法
Method method = clazz.getMethod("draw", int.class, String.class);
System.out.println("method:" + method);
//获取所有public的方法:
Method[] methods = clazz.getMethods();
for (Method m : methods) {
System.out.println("m::" + m);
}
System.out.println("=========================================");
//获取当前类的方法包含private,该方法无法获取继承自父类的method
Method method1 = clazz.getDeclaredMethod("drawCircle");
System.out.println("method1::" + method1);
//获取当前类的所有方法包含private,该方法无法获取继承自父类的method
Method[] methods1 = clazz.getDeclaredMethods();
for (Method m : methods1) {
System.out.println("m1::" + m);
}
}
}
class Shape {
public void draw() {
System.out.println("draw");
}
public void draw(int count, String name) {
System.out.println("draw " + name + ",count=" + count);
}
}
class Circle extends Shape {
private void drawCircle() {
System.out.println("drawCircle");
}
public int getAllCount() {
return 100;
}
}
输出结果:
method:public void reflect.Shape.draw(int,java.lang.String)
m::public int reflect.Circle.getAllCount()
m::public void reflect.Shape.draw()
m::public void reflect.Shape.draw(int,java.lang.String)
m::public final void java.lang.Object.wait(long,int) throws java.lang.InterruptedException
m::public final native void java.lang.Object.wait(long) throws java.lang.InterruptedException
m::public final void java.lang.Object.wait() throws java.lang.InterruptedException
m::public boolean java.lang.Object.equals(java.lang.Object)
m::public java.lang.String java.lang.Object.toString()
m::public native int java.lang.Object.hashCode()
m::public final native java.lang.Class java.lang.Object.getClass()
m::public final native void java.lang.Object.notify()
m::public final native void java.lang.Object.notifyAll()
=========================================
method1::private void reflect.Circle.drawCircle()
m1::public int reflect.Circle.getAllCount()
m1::private void reflect.Circle.drawCircle()
在通过getMethods方法获取Method对象时,会把父类的方法也获取到,如上的输出结果,把Object类的方法都打印出来了。而getDeclaredMethod/getDeclaredMethods方法都只能获取当前类的方法。我们在使用时根据情况选择即可。下面将演示通过Method对象调用指定类的方法:
Class clazz = Class.forName(“reflect.Circle”);
//创建对象
Circle circle = (Circle) clazz.newInstance();
//获取指定参数的方法对象
MethodMethod method = clazz.getMethod(“draw”,int.class,String.class);
//通过Method对象的invoke(Object obj,Object… args)方法调用
method.invoke(circle,15,”圈圈”);
//对私有无参方法的操作
Method method1 = clazz.getDeclaredMethod(“drawCircle”);
//修改私有方法的访问标识
method1.setAccessible(true);
method1.invoke(circle);
//对有返回值得方法操作
Method method2 =clazz.getDeclaredMethod(“getAllCount”);
Integer count = (Integer) method2.invoke(circle);
System.out.println(“count:”+count);
输出结果
draw 圈圈,count=15
drawCircle
count:100
在上述代码中调用方法,使用了Method类的invoke(Object obj,Object… args)第一个参数代表调用的对象,第二个参数传递的调用方法的参数。这样就完成了类方法的动态调用。
三. 反射机制执行的流程
— 测试代码
— 执行流程图
反射获取类实例
首先调用了 java.lang.Class 的静态方法,获取类信息。
@CallerSensitive
public static Class<?> forName(String className) throws ClassNotFoundException {
// 先通过反射,获取调用进来的类信息,从而获取当前的 classLoader
Class<?> caller = Reflection.getCallerClass();
// 调用native方法进行获取class信息
return forName0(className, true, ClassLoader.getClassLoader(caller), caller);
}
forName()反射获取类信息,并没有将实现留给了java,而是交给了jvm去加载。
主要是先获取 ClassLoader, 然后调用 native 方法,获取信息,加载类则是回调 java.lang.ClassLoader.
最后,jvm又会回调 ClassLoader 进类加载。
//
public Class<?> loadClass(String name) throws ClassNotFoundException {
return loadClass(name, false);
}
// sun.misc.Launcher
public Class<?> loadClass(String var1, boolean var2) throws ClassNotFoundException {
int var3 = var1.lastIndexOf(46);
if(var3 != -1) {
SecurityManager var4 = System.getSecurityManager();
if(var4 != null) {
var4.checkPackageAccess(var1.substring(0, var3));
}
}
if(this.ucp.knownToNotExist(var1)) {
Class var5 = this.findLoadedClass(var1);
if(var5 != null) {
if(var2) {
this.resolveClass(var5);
}
return var5;
} else {
throw new ClassNotFoundException(var1);
}
} else {
return super.loadClass(var1, var2);
}
}
// java.lang.ClassLoader
protected Class<?> loadClass(String name, boolean resolve)
throws ClassNotFoundException
{
// 先获取锁
synchronized (getClassLoadingLock(name)) {
// First, check if the class has already been loaded
// 如果已经加载了的话,就不用再加载了
Class<?> c = findLoadedClass(name);
if (c == null) {
long t0 = System.nanoTime();
try {
// 双亲委托加载
if (parent != null) {
c = parent.loadClass(name, false);
} else {
c = findBootstrapClassOrNull(name);
}
} catch (ClassNotFoundException e) {
// ClassNotFoundException thrown if class not found
// from the non-null parent class loader
}
// 父类没有加载到时,再自己加载
if (c == null) {
// If still not found, then invoke findClass in order
// to find the class.
long t1 = System.nanoTime();
c = findClass(name);
// this is the defining class loader; record the stats
sun.misc.PerfCounter.getParentDelegationTime().addTime(t1 - t0);
sun.misc.PerfCounter.getFindClassTime().addElapsedTimeFrom(t1);
sun.misc.PerfCounter.getFindClasses().increment();
}
}
if (resolve) {
resolveClass(c);
}
return c;
}
}
protected Object getClassLoadingLock(String className) {
Object lock = this;
if (parallelLockMap != null) {
// 使用 ConcurrentHashMap来保存锁
Object newLock = new Object();
lock = parallelLockMap.putIfAbsent(className, newLock);
if (lock == null) {
lock = newLock;
}
}
return lock;
}
protected final Class<?> findLoadedClass(String name) {
if (!checkName(name))
return null;
return findLoadedClass0(name);
}
下面来看一下 newInstance() 的实现方式。
// 首先肯定是 Class.newInstance
@CallerSensitive
public T newInstance()
throws InstantiationException, IllegalAccessException {
if (System.getSecurityManager() != null) {
checkMemberAccess(Member.PUBLIC, Reflection.getCallerClass(), false);
}
// NOTE: the following code may not be strictly correct under
// the current Java memory model.
// Constructor lookup
// newInstance() 其实相当于调用类的无参构造函数,所以,首先要找到其无参构造器
if (cachedConstructor == null) {
if (this == Class.class) {
// 不允许调用 Class 的 newInstance() 方法
throw new IllegalAccessException(
"Can not call newInstance() on the Class for java.lang.Class"
);
}
try {
// 获取无参构造器
Class<?>[] empty = {};
final Constructor<T> c = getConstructor0(empty, Member.DECLARED);
// Disable accessibility checks on the constructor
// since we have to do the security check here anyway
// (the stack depth is wrong for the Constructor's
// security check to work)
java.security.AccessController.doPrivileged(
new java.security.PrivilegedAction<Void>() {
public Void run() {
c.setAccessible(true);
return null;
}
});
cachedConstructor = c;
} catch (NoSuchMethodException e) {
throw (InstantiationException)
new InstantiationException(getName()).initCause(e);
}
}
Constructor<T> tmpConstructor = cachedConstructor;
// Security check (same as in java.lang.reflect.Constructor)
int modifiers = tmpConstructor.getModifiers();
if (!Reflection.quickCheckMemberAccess(this, modifiers)) {
Class<?> caller = Reflection.getCallerClass();
if (newInstanceCallerCache != caller) {
Reflection.ensureMemberAccess(caller, this, null, modifiers);
newInstanceCallerCache = caller;
}
}
// Run constructor
try {
// 调用无参构造器
return tmpConstructor.newInstance((Object[]) null);
} catch (InvocationTargetException e) {
Unsafe.getUnsafe().throwException(e.getTargetException());
// Not reached
return null;
}
}
newInstance() 主要做了三件事:
- 权限检测,如果不通过直接抛出异常;查找无参构造器,并将其缓存起来;调用具体方法的无参构造方法,生成实例并返回;
下面是获取构造器的过程:
private Constructor<T> getConstructor0(Class<?>[] parameterTypes,
int which) throws NoSuchMethodException
{
// 获取所有构造器
Constructor<T>[] constructors = privateGetDeclaredConstructors((which == Member.PUBLIC));
for (Constructor<T> constructor : constructors) {
if (arrayContentsEq(parameterTypes,
constructor.getParameterTypes())) {
return getReflectionFactory().copyConstructor(constructor);
}
}
throw new NoSuchMethodException(getName() + ".<init>" + argumentTypesToString(parameterTypes));
}
getConstructor0() 为获取匹配的构造方器;分三步:
- 先获取所有的constructors, 然后通过进行参数类型比较;找到匹配后,通过 ReflectionFactory copy一份constructor返回;否则抛出 NoSuchMethodException;
// 获取当前类所有的构造方法,通过jvm或者缓存
// Returns an array of "root" constructors. These Constructor
// objects must NOT be propagated to the outside world, but must
// instead be copied via ReflectionFactory.copyConstructor.
private Constructor<T>[] privateGetDeclaredConstructors(boolean publicOnly) {
checkInitted();
Constructor<T>[] res;
// 调用 reflectionData(), 获取保存的信息,使用软引用保存,从而使内存不够可以回收
ReflectionData<T> rd = reflectionData();
if (rd != null) {
res = publicOnly ? rd.publicConstructors : rd.declaredConstructors;
// 存在缓存,则直接返回
if (res != null) return res;
}
// No cached value available; request value from VM
if (isInterface()) {
@SuppressWarnings("unchecked")
Constructor<T>[] temporaryRes = (Constructor<T>[]) new Constructor<?>[0];
res = temporaryRes;
} else {
// 使用native方法从jvm获取构造器
res = getDeclaredConstructors0(publicOnly);
}
if (rd != null) {
// 最后,将从jvm中读取的内容,存入缓存
if (publicOnly) {
rd.publicConstructors = res;
} else {
rd.declaredConstructors = res;
}
}
return res;
}
// Lazily create and cache ReflectionData
private ReflectionData<T> reflectionData() {
SoftReference<ReflectionData<T>> reflectionData = this.reflectionData;
int classRedefinedCount = this.classRedefinedCount;
ReflectionData<T> rd;
if (useCaches &&
reflectionData != null &&
(rd = reflectionData.get()) != null &&
rd.redefinedCount == classRedefinedCount) {
return rd;
}
// else no SoftReference or cleared SoftReference or stale ReflectionData
// -> create and replace new instance
return newReflectionData(reflectionData, classRedefinedCount);
}
// 新创建缓存,保存反射信息
private ReflectionData<T> newReflectionData(SoftReference<ReflectionData<T>> oldReflectionData,
int classRedefinedCount) {
if (!useCaches) return null;
// 使用cas保证更新的线程安全性,所以反射是保证线程安全的
while (true) {
ReflectionData<T> rd = new ReflectionData<>(classRedefinedCount);
// try to CAS it...
if (Atomic.casReflectionData(this, oldReflectionData, new SoftReference<>(rd))) {
return rd;
}
// 先使用CAS更新,如果更新成功,则立即返回,否则测查当前已被其他线程更新的情况,如果和自己想要更新的状态一致,则也算是成功了
oldReflectionData = this.reflectionData;
classRedefinedCount = this.classRedefinedCount;
if (oldReflectionData != null &&
(rd = oldReflectionData.get()) != null &&
rd.redefinedCount == classRedefinedCount) {
return rd;
}
}
}
如上,privateGetDeclaredConstructors(), 获取所有的构造器主要步骤;
- 先尝试从缓存中获取;如果缓存没有,则从jvm中重新获取,并存入缓存,缓存使用软引用进行保存,保证内存可用;
另外,使用 relactionData() 进行缓存保存;ReflectionData 的数据结构如下。
// reflection data that might get invalidated when JVM TI RedefineClasses() is called
private static class ReflectionData<T> {
volatile Field[] declaredFields;
volatile Field[] publicFields;
volatile Method[] declaredMethods;
volatile Method[] publicMethods;
volatile Constructor<T>[] declaredConstructors;
volatile Constructor<T>[] publicConstructors;
// Intermediate results for getFields and getMethods
volatile Field[] declaredPublicFields;
volatile Method[] declaredPublicMethods;
volatile Class<?>[] interfaces;
// Value of classRedefinedCount when we created this ReflectionData instance
final int redefinedCount;
ReflectionData(int redefinedCount) {
this.redefinedCount = redefinedCount;
}
}
其中,还有一个点,就是如何比较构造是否是要查找构造器,其实就是比较类型完成相等就完了,有一个不相等则返回false。
private static boolean arrayContentsEq(Object[] a1, Object[] a2) {
if (a1 == null) {
return a2 == null || a2.length == 0;
}
if (a2 == null) {
return a1.length == 0;
}
if (a1.length != a2.length) {
return false;
}
for (int i = 0; i < a1.length; i++) {
if (a1[i] != a2[i]) {
return false;
}
}
return true;
}
// sun.reflect.ReflectionFactory
/**
* Makes a copy of the passed constructor. The returned
* <p>
* constructor is a "child" of the passed one; see the comments
* <p>
* in Constructor.java for details.
*/
public <T> Constructor<T> copyConstructor(Constructor<T> arg) {
return langReflectAccess().copyConstructor(arg);
}
// java.lang.reflect.Constructor, copy 其实就是新new一个 Constructor 出来
Constructor<T> copy() {
// This routine enables sharing of ConstructorAccessor objects
// among Constructor objects which refer to the same underlying
// method in the VM. (All of this contortion is only necessary
// because of the "accessibility" bit in AccessibleObject,
// which implicitly requires that new java.lang.reflect
// objects be fabricated for each reflective call on Class
// objects.)
if (this.root != null)
throw new IllegalArgumentException("Can not copy a non-root Constructor");
Constructor<T> res = new Constructor<>(clazz,
parameterTypes,
exceptionTypes, modifiers, slot,
signature,
annotations,
parameterAnnotations);
// root 指向当前 constructor
res.root = this;
// Might as well eagerly propagate this if already present
res.constructorAccessor = constructorAccessor;
return res;
}
通过上面,获取到 Constructor 了。
接下来就只需调用其相应构造器的 newInstance(),即返回实例了。
// return tmpConstructor.newInstance((Object[])null);
// java.lang.reflect.Constructor
@CallerSensitive
public T newInstance(Object... initargs)
throws InstantiationException, IllegalAccessException,
IllegalArgumentException, InvocationTargetException {
if (!override) {
if (!Reflection.quickCheckMemberAccess(clazz, modifiers)) {
Class<?> caller = Reflection.getCallerClass();
checkAccess(caller, clazz, null, modifiers);
}
}
if ((clazz.getModifiers() & Modifier.ENUM) != 0)
throw new IllegalArgumentException("Cannot reflectively create enum objects");
ConstructorAccessor ca = constructorAccessor; // read volatile
if (ca == null) {
ca = acquireConstructorAccessor();
}
@SuppressWarnings("unchecked")
T inst = (T) ca.newInstance(initargs);
return inst;
}
// sun.reflect.DelegatingConstructorAccessorImpl
public Object newInstance(Object[] args)
throws InstantiationException,
IllegalArgumentException,
InvocationTargetException {
return delegate.newInstance(args);
}
// sun.reflect.NativeConstructorAccessorImpl
public Object newInstance(Object[] args)
throws InstantiationException,
IllegalArgumentException,
InvocationTargetException {
// We can't inflate a constructor belonging to a vm-anonymous class
// because that kind of class can't be referred to by name, hence can't
// be found from the generated bytecode.
if (++numInvocations > ReflectionFactory.inflationThreshold()
&& !ReflectUtil.isVMAnonymousClass(c.getDeclaringClass())) {
ConstructorAccessorImpl acc = (ConstructorAccessorImpl)
new MethodAccessorGenerator().
generateConstructor(c.getDeclaringClass(),
c.getParameterTypes(),
c.getExceptionTypes(),
c.getModifiers());
parent.setDelegate(acc);
}
// 调用native方法,进行调用 constructor
return newInstance0(c, args);
}
返回构造器的实例后,可以根据外部进行进行类型转换,从而使用接口或方法进行调用实例功能了。
反射获取方法
- 第一步,先获取 Method;
// java.lang.Class
@CallerSensitive
public Method getDeclaredMethod(String name, Class<?>... parameterTypes)
throws NoSuchMethodException, SecurityException {
checkMemberAccess(Member.DECLARED, Reflection.getCallerClass(), true);
Method method = searchMethods(privateGetDeclaredMethods(false), name, parameterTypes);
if (method == null) {
throw new NoSuchMethodException(getName() + "." + name + argumentTypesToString(parameterTypes));
}
return method;
}
忽略第一个检查权限,剩下就只有两个动作了。
- 获取所有方法列表;根据方法名称和方法列表,选出符合要求的方法;如果没有找到相应方法,抛出异常,否则返回对应方法;
所以,先看一下怎样获取类声明的所有方法?
// Returns an array of "root" methods. These Method objects must NOT
// be propagated to the outside world, but must instead be copied
// via ReflectionFactory.copyMethod.
private Method[] privateGetDeclaredMethods(boolean publicOnly) {
checkInitted();
Method[] res;
ReflectionData<T> rd = reflectionData();
if (rd != null) {
res = publicOnly ? rd.declaredPublicMethods : rd.declaredMethods;
if (res != null) return res;
}
// No cached value available; request value from VM
res = Reflection.filterMethods(this, getDeclaredMethods0(publicOnly));
if (rd != null) {
if (publicOnly) {
rd.declaredPublicMethods = res;
} else {
rd.declaredMethods = res;
}
}
return res;
}
很相似,和获取所有构造器的方法很相似,都是先从缓存中获取方法,如果没有,则从jvm中获取。
不同的是,方法列表需要进行过滤 Reflection.filterMethods;当然后面看来,这个方法我们一般不会派上用场。
// sun.misc.Reflection
public static Method[] filterMethods(Class<?> containingClass, Method[] methods) {
if (methodFilterMap == null) {
// Bootstrapping
return methods;
}
return (Method[]) filter(methods, methodFilterMap.get(containingClass));
}
// 可以过滤指定的方法,一般为空,如果要指定过滤,可以调用 registerMethodsToFilter(), 或者...
private static Member[] filter(Member[] members, String[] filteredNames) {
if ((filteredNames == null) || (members.length == 0)) {
return members;
}
int numNewMembers = 0;
for (Member member : members) {
boolean shouldSkip = false;
for (String filteredName : filteredNames) {
if (member.getName() == filteredName) {
shouldSkip = true;
break;
}
}
if (!shouldSkip) {
++numNewMembers;
}
}
Member[] newMembers =
(Member[]) Array.newInstance(members[0].getClass(), numNewMembers);
int destIdx = 0;
for (Member member : members) {
boolean shouldSkip = false;
for (String filteredName : filteredNames) {
if (member.getName() == filteredName) {
shouldSkip = true;
break;
}
}
if (!shouldSkip) {
newMembers[destIdx++] = member;
}
}
return newMembers;
}
- 第二步,根据方法名和参数类型过滤指定方法返回:
private static Method searchMethods(Method[] methods,
String name,
Class<?>[] parameterTypes) {
Method res = null;
// 使用常量池,避免重复创建String
String internedName = name.intern();
for (int i = 0; i < methods.length; i++) {
Method m = methods[i];
if (m.getName() == internedName
&& arrayContentsEq(parameterTypes, m.getParameterTypes())
&& (res == null
|| res.getReturnType().isAssignableFrom(m.getReturnType())))
res = m;
}
return (res == null ? res : getReflectionFactory().copyMethod(res));
}
大概意思看得明白,就是匹配到方法名,然后参数类型匹配,才可以。
- 但是可以看到,匹配到一个方法,并没有退出for循环,而是继续进行匹配。
- 这里是匹配最精确的子类进行返回(最优匹配)
- 最后,还是通过 ReflectionFactory, copy 方法后返回。
调用 method.invoke() 方法
@CallerSensitive
public Object invoke(Object obj, Object... args)
throws IllegalAccessException, IllegalArgumentException,
InvocationTargetException
{
if (!override) {
if (!Reflection.quickCheckMemberAccess(clazz, modifiers)) {
Class<?> caller = Reflection.getCallerClass();
checkAccess(caller, clazz, obj, modifiers);
}
}
MethodAccessor ma = methodAccessor; // read volatile
if (ma == null) {
ma = acquireMethodAccessor();
}
return ma.invoke(obj, args);
}
invoke时,是通过 MethodAccessor 进行调用的,而 MethodAccessor 是个接口,在第一次时调用 acquireMethodAccessor() 进行新创建。
// probably make the implementation more scalable.
private MethodAccessor acquireMethodAccessor() {
// First check to see if one has been created yet, and take it
// if so
MethodAccessor tmp = null;
if (root != null) tmp = root.getMethodAccessor();
if (tmp != null) {
// 存在缓存时,存入 methodAccessor,否则调用 ReflectionFactory 创建新的 MethodAccessor
methodAccessor = tmp;
} else {
// Otherwise fabricate one and propagate it up to the root
tmp = reflectionFactory.newMethodAccessor(this);
setMethodAccessor(tmp);
}
return tmp;
}
// sun.reflect.ReflectionFactory
public MethodAccessor newMethodAccessor(Method method) {
checkInitted();
if (noInflation && !ReflectUtil.isVMAnonymousClass(method.getDeclaringClass())) {
return new MethodAccessorGenerator().
generateMethod(method.getDeclaringClass(),
method.getName(),
method.getParameterTypes(),
method.getReturnType(),
method.getExceptionTypes(),
method.getModifiers());
} else {
NativeMethodAccessorImpl acc =
new NativeMethodAccessorImpl(method);
DelegatingMethodAccessorImpl res =
new DelegatingMethodAccessorImpl(acc);
acc.setParent(res);
return res;
}
}
两个Accessor详情:
// NativeMethodAccessorImpl / DelegatingMethodAccessorImplclass NativeMethodAccessorImpl extends MethodAccessorImpl {
private final Method method;
private DelegatingMethodAccessorImpl parent;
private int numInvocations;
NativeMethodAccessorImpl(Method method) {
this.method = method;
}
public Object invoke(Object obj, Object[] args)
throws IllegalArgumentException, InvocationTargetException {
// We can't inflate methods belonging to vm-anonymous classes because
// that kind of class can't be referred to by name, hence can't be
// found from the generated bytecode.
if (++numInvocations > ReflectionFactory.inflationThreshold()
&& !ReflectUtil.isVMAnonymousClass(method.getDeclaringClass())) {
MethodAccessorImpl acc = (MethodAccessorImpl)
new MethodAccessorGenerator().
generateMethod(method.getDeclaringClass(),
method.getName(),
method.getParameterTypes(),
method.getReturnType(),
method.getExceptionTypes(),
method.getModifiers());
parent.setDelegate(acc);
}
return invoke0(method, obj, args);
}
void setParent(DelegatingMethodAccessorImpl parent) {
this.parent = parent;
}
private static native Object invoke0(Method m, Object obj, Object[] args);
}
class DelegatingMethodAccessorImpl extends MethodAccessorImpl {
private MethodAccessorImpl delegate;
DelegatingMethodAccessorImpl(MethodAccessorImpl delegate) {
setDelegate(delegate);
}
public Object invoke(Object obj, Object[] args)
throws IllegalArgumentException, InvocationTargetException {
return delegate.invoke(obj, args);
}
void setDelegate(MethodAccessorImpl delegate) {
this.delegate = delegate;
}
进行 ma.invoke(obj, args); 调用时,调用 DelegatingMethodAccessorImpl.invoke();
最后被委托到 NativeMethodAccessorImpl.invoke(), 即:
public Object invoke(Object obj, Object[] args)
throws IllegalArgumentException, InvocationTargetException {
// We can't inflate methods belonging to vm-anonymous classes because
// that kind of class can't be referred to by name, hence can't be
// found from the generated bytecode.
if (++numInvocations > ReflectionFactory.inflationThreshold()
&& !ReflectUtil.isVMAnonymousClass(method.getDeclaringClass())) {
MethodAccessorImpl acc = (MethodAccessorImpl)
new MethodAccessorGenerator().
generateMethod(method.getDeclaringClass(),
method.getName(),
method.getParameterTypes(),
method.getReturnType(),
method.getExceptionTypes(),
method.getModifiers());
parent.setDelegate(acc);
}
// invoke0 是个 native 方法,由jvm进行调用业务方法。从而完成反射调用功能。
return invoke0(method, obj, args);
}
其中, generateMethod() 是生成具体类的方法:
/**
* This routine is not thread-safe
*/
public MethodAccessor generateMethod(Class<?> declaringClass,
String name,
Class<?>[] parameterTypes,
Class<?> returnType,
Class<?>[] checkedExceptions,
int modifiers) {
return (MethodAccessor) generate(declaringClass,
name,
parameterTypes,
returnType,
checkedExceptions,
modifiers,
false,
false,
null);
}
generate() 戳详情。
/**
* This routine is not thread-safe
*/
private MagicAccessorImpl generate(final Class<?> declaringClass,
String name,
Class<?>[]parameterTypes,
Class<?> returnType,
Class<?>[]checkedExceptions,
int modifiers,
boolean isConstructor,
boolean forSerialization,
Class<?> serializationTargetClass)
{
ByteVector vec=ByteVectorFactory.create();
asm=new ClassFileAssembler(vec);
this.declaringClass=declaringClass;
this.parameterTypes=parameterTypes;
this.returnType=returnType;
this.modifiers=modifiers;
this.isConstructor=isConstructor;
this.forSerialization=forSerialization;
asm.emitMagicAndVersion();
// Constant pool entries:
// ( * = Boxing information: optional)
// (+ = Shared entries provided by AccessorGenerator)
// (^ = Only present if generating SerializationConstructorAccessor)
// [UTF-8] [This class's name]
// [CONSTANT_Class_info] for above
// [UTF-8] "sun/reflect/{MethodAccessorImpl,ConstructorAccessorImpl,SerializationConstructorAccessorImpl}"
// [CONSTANT_Class_info] for above
// [UTF-8] [Target class's name]
// [CONSTANT_Class_info] for above
// ^ [UTF-8] [Serialization: Class's name in which to invoke constructor]
// ^ [CONSTANT_Class_info] for above
// [UTF-8] target method or constructor name
// [UTF-8] target method or constructor signature
// [CONSTANT_NameAndType_info] for above
// [CONSTANT_Methodref_info or CONSTANT_InterfaceMethodref_info] for target method
// [UTF-8] "invoke" or "newInstance"
// [UTF-8] invoke or newInstance descriptor
// [UTF-8] descriptor for type of non-primitive parameter 1
// [CONSTANT_Class_info] for type of non-primitive parameter 1
// ...
// [UTF-8] descriptor for type of non-primitive parameter n
// [CONSTANT_Class_info] for type of non-primitive parameter n
// + [UTF-8] "java/lang/Exception"
// + [CONSTANT_Class_info] for above
// + [UTF-8] "java/lang/ClassCastException"
// + [CONSTANT_Class_info] for above
// + [UTF-8] "java/lang/NullPointerException"
// + [CONSTANT_Class_info] for above
// + [UTF-8] "java/lang/IllegalArgumentException"
// + [CONSTANT_Class_info] for above
// + [UTF-8] "java/lang/InvocationTargetException"
// + [CONSTANT_Class_info] for above
// + [UTF-8] "<init>"
// + [UTF-8] "()V"
// + [CONSTANT_NameAndType_info] for above
// + [CONSTANT_Methodref_info] for NullPointerException's constructor
// + [CONSTANT_Methodref_info] for IllegalArgumentException's constructor
// + [UTF-8] "(Ljava/lang/String;)V"
// + [CONSTANT_NameAndType_info] for "<init>(Ljava/lang/String;)V"
// + [CONSTANT_Methodref_info] for IllegalArgumentException's constructor taking a String
// + [UTF-8] "(Ljava/lang/Throwable;)V"
// + [CONSTANT_NameAndType_info] for "<init>(Ljava/lang/Throwable;)V"
// + [CONSTANT_Methodref_info] for InvocationTargetException's constructor
// + [CONSTANT_Methodref_info] for "super()"
// + [UTF-8] "java/lang/Object"
// + [CONSTANT_Class_info] for above
// + [UTF-8] "toString"
// + [UTF-8] "()Ljava/lang/String;"
// + [CONSTANT_NameAndType_info] for "toString()Ljava/lang/String;"
// + [CONSTANT_Methodref_info] for Object's toString method
// + [UTF-8] "Code"
// + [UTF-8] "Exceptions"
// * [UTF-8] "java/lang/Boolean"
// * [CONSTANT_Class_info] for above
// * [UTF-8] "(Z)V"
// * [CONSTANT_NameAndType_info] for above
// * [CONSTANT_Methodref_info] for above
// * [UTF-8] "booleanValue"
// * [UTF-8] "()Z"
// * [CONSTANT_NameAndType_info] for above
// * [CONSTANT_Methodref_info] for above
// * [UTF-8] "java/lang/Byte"
// * [CONSTANT_Class_info] for above
// * [UTF-8] "(B)V"
// * [CONSTANT_NameAndType_info] for above
// * [CONSTANT_Methodref_info] for above
// * [UTF-8] "byteValue"
// * [UTF-8] "()B"
// * [CONSTANT_NameAndType_info] for above
// * [CONSTANT_Methodref_info] for above
// * [UTF-8] "java/lang/Character"
// * [CONSTANT_Class_info] for above
// * [UTF-8] "(C)V"
// * [CONSTANT_NameAndType_info] for above
// * [CONSTANT_Methodref_info] for above
// * [UTF-8] "charValue"
// * [UTF-8] "()C"
// * [CONSTANT_NameAndType_info] for above
// * [CONSTANT_Methodref_info] for above
// * [UTF-8] "java/lang/Double"
// * [CONSTANT_Class_info] for above
// * [UTF-8] "(D)V"
// * [CONSTANT_NameAndType_info] for above
// * [CONSTANT_Methodref_info] for above
// * [UTF-8] "doubleValue"
// * [UTF-8] "()D"
// * [CONSTANT_NameAndType_info] for above
// * [CONSTANT_Methodref_info] for above
// * [UTF-8] "java/lang/Float"
// * [CONSTANT_Class_info] for above
// * [UTF-8] "(F)V"
// * [CONSTANT_NameAndType_info] for above
// * [CONSTANT_Methodref_info] for above
// * [UTF-8] "floatValue"
// * [UTF-8] "()F"
// * [CONSTANT_NameAndType_info] for above
// * [CONSTANT_Methodref_info] for above
// * [UTF-8] "java/lang/Integer"
// * [CONSTANT_Class_info] for above
// * [UTF-8] "(I)V"
// * [CONSTANT_NameAndType_info] for above
// * [CONSTANT_Methodref_info] for above
// * [UTF-8] "intValue"
// * [UTF-8] "()I"
// * [CONSTANT_NameAndType_info] for above
// * [CONSTANT_Methodref_info] for above
// * [UTF-8] "java/lang/Long"
// * [CONSTANT_Class_info] for above
// * [UTF-8] "(J)V"
// * [CONSTANT_NameAndType_info] for above
// * [CONSTANT_Methodref_info] for above
// * [UTF-8] "longValue"
// * [UTF-8] "()J"
// * [CONSTANT_NameAndType_info] for above
// * [CONSTANT_Methodref_info] for above
// * [UTF-8] "java/lang/Short"
// * [CONSTANT_Class_info] for above
// * [UTF-8] "(S)V"
// * [CONSTANT_NameAndType_info] for above
// * [CONSTANT_Methodref_info] for above
// * [UTF-8] "shortValue"
// * [UTF-8] "()S"
// * [CONSTANT_NameAndType_info] for above
// * [CONSTANT_Methodref_info] for above
short numCPEntries=NUM_BASE_CPOOL_ENTRIES+NUM_COMMON_CPOOL_ENTRIES;
boolean usesPrimitives=usesPrimitiveTypes();
if(usesPrimitives){
numCPEntries+=NUM_BOXING_CPOOL_ENTRIES;
}
if(forSerialization){
numCPEntries+=NUM_SERIALIZATION_CPOOL_ENTRIES;
}
// Add in variable-length number of entries to be able to describe
// non-primitive parameter types and checked exceptions.
numCPEntries+=(short)(2*numNonPrimitiveParameterTypes());
asm.emitShort(add(numCPEntries,S1));
final String generatedName=generateName(isConstructor,forSerialization);
asm.emitConstantPoolUTF8(generatedName);
asm.emitConstantPoolClass(asm.cpi());
thisClass=asm.cpi();
if(isConstructor){
if(forSerialization){
asm.emitConstantPoolUTF8
("sun/reflect/SerializationConstructorAccessorImpl");
}else{
asm.emitConstantPoolUTF8("sun/reflect/ConstructorAccessorImpl");
}
}else{
asm.emitConstantPoolUTF8("sun/reflect/MethodAccessorImpl");
}
asm.emitConstantPoolClass(asm.cpi());
superClass=asm.cpi();
asm.emitConstantPoolUTF8(getClassName(declaringClass,false));
asm.emitConstantPoolClass(asm.cpi());
targetClass=asm.cpi();
short serializationTargetClassIdx=(short)0;
if(forSerialization){
asm.emitConstantPoolUTF8(getClassName(serializationTargetClass,false));
asm.emitConstantPoolClass(asm.cpi());
serializationTargetClassIdx=asm.cpi();
}
asm.emitConstantPoolUTF8(name);
asm.emitConstantPoolUTF8(buildInternalSignature());
asm.emitConstantPoolNameAndType(sub(asm.cpi(),S1),asm.cpi());
if(isInterface()){
asm.emitConstantPoolInterfaceMethodref(targetClass,asm.cpi());
}else{
if(forSerialization){
asm.emitConstantPoolMethodref(serializationTargetClassIdx,asm.cpi());
}else{
asm.emitConstantPoolMethodref(targetClass,asm.cpi());
}
}
targetMethodRef=asm.cpi();
if(isConstructor){
asm.emitConstantPoolUTF8("newInstance");
}else{
asm.emitConstantPoolUTF8("invoke");
}
invokeIdx=asm.cpi();
if(isConstructor){
asm.emitConstantPoolUTF8("([Ljava/lang/Object;)Ljava/lang/Object;");
}else{
asm.emitConstantPoolUTF8
("(Ljava/lang/Object;[Ljava/lang/Object;)Ljava/lang/Object;");
}
invokeDescriptorIdx=asm.cpi();
// Output class information for non-primitive parameter types
nonPrimitiveParametersBaseIdx=add(asm.cpi(),S2);
for(int i=0;i<parameterTypes.length;i++){
Class<?> c=parameterTypes[i];
if(!isPrimitive(c)){
asm.emitConstantPoolUTF8(getClassName(c,false));
asm.emitConstantPoolClass(asm.cpi());
}
}
// Entries common to FieldAccessor, MethodAccessor and ConstructorAccessor
emitCommonConstantPoolEntries();
// Boxing entries
if(usesPrimitives){
emitBoxingContantPoolEntries();
}
if(asm.cpi()!=numCPEntries){
throw new InternalError("Adjust this code (cpi = "+asm.cpi()+
", numCPEntries = "+numCPEntries+")");
}
// Access flags
asm.emitShort(ACC_PUBLIC);
// This class
asm.emitShort(thisClass);
// Superclass
asm.emitShort(superClass);
// Interfaces count and interfaces
asm.emitShort(S0);
// Fields count and fields
asm.emitShort(S0);
// Methods count and methods
asm.emitShort(NUM_METHODS);
emitConstructor();
emitInvoke();
// Additional attributes (none)
asm.emitShort(S0);
// Load class
vec.trim();
final byte[]bytes=vec.getData();
// Note: the class loader is the only thing that really matters
// here -- it's important to get the generated code into the
// same namespace as the target class. Since the generated code
// is privileged anyway, the protection domain probably doesn't
// matter.
return AccessController.doPrivileged(
new PrivilegedAction<MagicAccessorImpl>(){
public MagicAccessorImpl run(){
try{
return(MagicAccessorImpl)
ClassDefiner.defineClass
(generatedName,
bytes,
0,
bytes.length,
declaringClass.getClassLoader()).newInstance();
}catch(InstantiationException|IllegalAccessException e){
throw new InternalError(e);
}
}
});
}
咱们主要看这一句:ClassDefiner.defineClass(xx, declaringClass.getClassLoader()).newInstance();
在ClassDefiner.defineClass方法实现中,每被调用一次都会生成一个DelegatingClassLoader类加载器对象 ,这里每次都生成新的类加载器,是为了性能考虑,在某些情况下可以卸载这些生成的类,因为类的卸载是只有在类加载器可以被回收的情况下才会被回收的,如果用了原来的类加载器,那可能导致这些新创建的类一直无法被卸载。
而反射生成的类,有时候可能用了就可以卸载了,所以使用其独立的类加载器,从而使得更容易控制反射类的生命周期。
反射调用流程小结
最后,用几句话总结反射的实现原理:
反射类及反射方法的获取,都是通过从列表中搜寻查找匹配的方法,所以查找性能会随类的大小方法多少而变化;
每个类都会有一个与之对应的Class实例,从而每个类都可以获取method反射方法,并作用到其他实例身上;
反射也是考虑了线程安全的,放心使用;
反射使用软引用relectionData缓存class信息,避免每次重新从jvm获取带来的开销;
反射调用多次生成新代理Accessor, 而通过字节码生存的则考虑了卸载功能,所以会使用独立的类加载器;
当找到需要的方法,都会copy一份出来,而不是使用原来的实例,从而保证数据隔离;
调度反射方法,最终是由jvm执行invoke0()执行
免责声明:本站所有文章内容,图片,视频等均是来源于用户投稿和互联网及文摘转载整编而成,不代表本站观点,不承担相关法律责任。其著作权各归其原作者或其出版社所有。如发现本站有涉嫌抄袭侵权/违法违规的内容,侵犯到您的权益,请在线联系站长,一经查实,本站将立刻删除。 本文来自网络,若有侵权,请联系删除,如若转载,请注明出处:https://itzsg.com/17451.html