欢迎大家来到IT世界,在知识的湖畔探索吧!
分式运算的一般方法就是按分式运算法则和运算顺序进行运算。但对某些较复杂的题目,使用一般方法有时计算量太大,导致出错,有时甚至算不出来,下面列举几例介绍分式运算的几点技巧。
一、分段分步法
例1、计算:
欢迎大家来到IT世界,在知识的湖畔探索吧!
分析:若一次通分,计算量太大,注意到相邻分母之间,依次通分构成平方差公式,采用分段分步法,则可使问题简单化。
解:原式
二、分裂整数法
例2、计算:
分析:当算式中各分式的分子次数与分母次数相同次数时,一般要先利用分裂整数法对分子降次后再通分;在解某些分式方程中,也可使用分裂整数法。
解:原式
三、拆项法
例3、计算:
分析:对形如上面的算式,分母要先因式分解,再逆用公式
,各个分式拆项,正负抵消一部分,再通分。在解某些分式方程中,也可使用拆项法。
解:原式
四、活用乘法公式
例4、计算:
分析:在本题中,原式乘以同一代数式,之后再除以同一代数式还原,就可连续使用平方差公式,分式运算中若恰当使用乘法公式,可使计算简便。
解:当
且
时,
原式
五、巧选运算顺序
例5、计算:
分析:此题若按两数和(差)的平方公式展开前后两个括号,计算将很麻烦,一般两个分式的和(差)的平方或立方不能按公式展开,只能先算括号内的。
解:原式
六、见繁化简
例6、计算:
分析:若运算中的分式不是最简分式,可先约分,再选用适当方法通分,可使运算简便。
解:原式
免责声明:本站所有文章内容,图片,视频等均是来源于用户投稿和互联网及文摘转载整编而成,不代表本站观点,不承担相关法律责任。其著作权各归其原作者或其出版社所有。如发现本站有涉嫌抄袭侵权/违法违规的内容,侵犯到您的权益,请在线联系站长,一经查实,本站将立刻删除。 本文来自网络,若有侵权,请联系删除,如若转载,请注明出处:https://itzsg.com/127981.html