欢迎大家来到IT世界,在知识的湖畔探索吧!
前言
相关系数图是对相关系数矩阵进行可视化的,用于展示多组变量之间的相关性。
根据数据的分布特征,可以应用不同的相关系数计算方法,如 pearson、spearman、Kendall 等
相关系数矩阵的可视化图形,可以是热图、气泡图、方块图、椭圆图,也可以是纯数字文本形式,等等。
下面我们介绍它们的绘制方法
示例
我们首先使用 ggplot2 包提供的函数来绘制这些图形
先计算相关系数矩阵
mat <- as.data.frame(round(cor(mtcars), 2)) mat$var1 <- rownames(mat) data <- gather(mat, key = "var2", value = "corr", -var1)
欢迎大家来到IT世界,在知识的湖畔探索吧!
1. 热图
欢迎大家来到IT世界,在知识的湖畔探索吧!library(RColorBrewer) # 获取 5 个颜色 my_color <- brewer.pal(5, "Spectral") ggplot(data, aes(var1, var2, fill = corr)) + geom_tile(colour = "black") + scale_fill_gradientn(colours = my_color)
欢迎大家来到IT世界,在知识的湖畔探索吧!
2. 气泡图
ggplot(data, aes(var1, var2, fill = corr)) + geom_point(aes(size = abs(corr)), shape = 21, colour = "black") + scale_fill_gradientn(colours = my_color) + scale_size_area(max_size = 15, guide = FALSE)
3. 方块图
只要设置参数 shape = 22,就可以换成方块了
欢迎大家来到IT世界,在知识的湖畔探索吧!geom_point(aes(size = abs(corr)), shape = 22, colour = "black")
4. 设置标签
使用 geom_text 添加标签
geom_text(aes(label = corr), size = 3, colour = "black", alpha = 0.7)
为正负相关设置不同的颜色
欢迎大家来到IT世界,在知识的湖畔探索吧!geom_point(aes(fill = corr > 0, size = corr), shape = 21)
5. 混合绘图
如果想绘制上三角或下三角该怎么做?
ggplot2 并没有提供相应的操作,但是我们可以手动对数据进行处理,将对应的数据赋值为 NA
比如,我想绘制下三角。首先,把上三角赋值为 NA
mat <- as.data.frame(round(cor(mtcars), 2)) for (i in 1:10) { for (j in (i+1):11) { mat[i,j] <- NA } }
然后将变量名的顺序固定为行名顺序
欢迎大家来到IT世界,在知识的湖畔探索吧!mat$var1 <- rownames(mat) data <- gathermat key='var2' value='corr' -var1>% mutate(var1 = factor(var1, levels = rownames(mat)), var2 = factor(var2, levels = rownames(mat)))
然后绘制图形
my_color <- brewer.pal(5, "Spectral") ggplot(data, aes(var1, var2)) + geom_point(aes(fill = corr, size = corr), shape = 21) + geom_text(aes(label = corr), size = 3, colour = "white") + scale_fill_gradientn(colours = my_color) + scale_size_area(max_size = 15, guide = FALSE) + theme(legend.position = "none")
如果想将文本和形状分别绘制在上三角和下三角,操作也是类似的,只是要多添加一个上三角矩阵。
欢迎大家来到IT世界,在知识的湖畔探索吧!mat1 <- as.data.frame(round(cor(mtcars), 2)) for (i in 1:10) { for (j in (i+1):11) { mat1[i,j] <- NA } } mat2 <- as.data.frame(round(cor(mtcars), 2)) for (i in 1:11) { for (j in 1:i) { mat2[i,j] <- NA } } mat1$var1 <- rownames(mat1) data1 <- gathermat1 key='var2' value='corr' -var1>% mutate(var1 = factor(var1, levels = rownames(mat1)), var2 = factor(var2, levels = rownames(mat1))) mat2$var1 <- rownames(mat2) data2 <- gathermat2 key='var2' value='corr' -var1>% mutate(var1 = factor(var1, levels = rownames(mat2)), var2 = factor(var2, levels = rownames(mat2))) my_color <- brewer.pal(5, "Spectral") ggplot(data1, aes(var1, var2)) + geom_point(aes(fill = corr, size = corr), shape = 21) + geom_text(data = data2, aes(label = corr, colour = corr), size = 5) + scale_fill_gradientn(colours = my_color) + scale_colour_gradientn(colours = my_color) + scale_size_area(max_size = 15, guide = FALSE) + theme(legend.position = "none")
如果要将对角线换成变量名,也很简单
mat1 <- as.data.frame(round(cor(mtcars), 2)) for (i in 1:11) { for (j in i:11) { mat1[i,j] <- NA } } mat2 <- as.data.frame(round(cor(mtcars), 2)) for (i in 1:11) { for (j in 1:i) { mat2[i,j] <- NA } } var_name <- data1>% filter(var1 == var2) mat1$var1 <- rownames(mat1) data1 <- gathermat1 key='var2' value='corr' -var1>% mutate(var1 = factor(var1, levels = rownames(mat1)), var2 = factor(var2, levels = rownames(mat1))) mat2$var1 <- rownames(mat2) data2 <- gathermat2 key='var2' value='corr' -var1>% mutate(var1 = factor(var1, levels = rownames(mat2)), var2 = factor(var2, levels = rownames(mat2))) my_color <- brewer.pal(5, "Spectral") ggplot(data1, aes(var1, var2)) + geom_point(aes(fill = corr, size = corr), shape = 21) + #geom_point(data = data2, aes(fill = corr, size = corr), shape = 23) + geom_text(data = data2, aes(label = corr, colour = corr), size = 5) + geom_text(data = var_name, aes(label = var1), size = 5) + scale_fill_gradientn(colours = my_color) + scale_colour_gradientn(colours = my_color) + scale_size_area(max_size = 15, guide = FALSE) + scale_x_discrete(position = 't') + theme( legend.position = "none", axis.title = element_blank() )
方块配圆形
欢迎大家来到IT世界,在知识的湖畔探索吧!geom_point(data = data2, aes(fill = corr, size = corr), shape = 22) + # geom_text(data = data2, aes(label = corr, colour = corr), size = 5) +
热图配圆形
ggplot(data1, aes(var1, var2)) + geom_tile(data = data2, aes(fill = corr), na.rm = TRUE) + geom_text(data = data2, aes(label = corr), colour = "black", size = 5) + geom_point(aes(fill = corr, size = corr), shape = 21) + geom_text(data = var_name, aes(label = var1), size = 5) + scale_fill_gradientn(colours = my_color, na.value = "white") + scale_colour_gradientn(colours = my_color) + scale_size_area(max_size = 15, guide = FALSE) + scale_x_discrete(position = 't') + theme( panel.background = element_blank(), legend.position = "none", axis.title = element_blank() )
注意,需要将 geom_tile 放在最前面,同时设置 na.value 参数的值
代码:https://github.com/dxsbiocc/learn/blob/main/R/plot/corr_plot.R
总结一下,其实用 ggplot2 做个性化绘图没那么难,重要的是理解其中的原理。
免责声明:本站所有文章内容,图片,视频等均是来源于用户投稿和互联网及文摘转载整编而成,不代表本站观点,不承担相关法律责任。其著作权各归其原作者或其出版社所有。如发现本站有涉嫌抄袭侵权/违法违规的内容,侵犯到您的权益,请在线联系站长,一经查实,本站将立刻删除。 本文来自网络,若有侵权,请联系删除,如若转载,请注明出处:https://itzsg.com/114273.html